

ООО НПП «ТЕПЛОВОДОХРАН»

Вычислители тепловой энергии ПУЛЬСАР

Руководство по эксплуатации ЮТЛИ.408837.001-01 РЭ (ред.2)

Сделано в России

Регистрационный номер типа 89587-23

ОКПД2 26.51.52

1 НАЗНАЧЕНИЕ

Вычислители тепловой энергии ПУЛЬСАР (далее - тепловычислители) предназначены для измерения и преобразования выходных аналоговых и цифровых сигналов от первичных преобразователей в значения соответствующих физических величин с последующим вычислением и индикацией тепловой энергии/энергии охлаждения, объемного расхода, объема, массового расхода, массы, температуры, разности температур, давления теплоносителя, а также измерения текущего времени.

Тепловычислители применяются в составе теплосчетчиков для учета тепловой энергии и теплоносителя в закрытых и открытых системах теплоснабжения или охлаждения.

Тепловычислители осуществляют:

- измерение входных аналоговых сигналов (или прием результатов измерений от цифровых выходных сигналов СИ), с последующим расчетом и индикацией тепловой энергии/энергии охлаждения, объемного расхода, объема, массы, температуры, разности температур, давления;
 - измерение и индикацию времени работы, ч;
 - периодическое фиксирование параметров во внутренней энергонезависимой памяти;
 - передачу данных по проводным и радиоинтерфейсам.

Тепловычислители имеют модификации, которые отличаются функционалом, количеством измерительных входов, параметрами измерительных входов, конструктивом, количеством и типом интерфейсов связи. Характеристики модификаций вычислителей и МАР приведены в таблице 1.

Таблица 1 – Модификации тепловычислителей и МАР

таолица т тугодификации тепловы инелителен и туп и				
	Значение			
Наименование характеристики	Модификация		MAP	
	TB1	TB2		
Вычисление энергии	да	да	нет	
Архивация измеряемых и вычисляемых параметров, не менее	360 минут ¹⁾	360 минут ¹⁾		
	1488 часов	1488 часов		
	184 суток	184 суток	-	
	60 месяцев	60 месяцев		
Количество систем теплоснабжения (охлаждения) 2)	до 6 ³⁾	до 8 ³⁾	-	
Количество импульсных входов для подключения расходомеров	до 6 ³⁾	до 8 ³⁾	до 6	
Количество входов для подключения термопреобразователей	до 6 ³⁾	до 83)	до 6	
Количество входов для подключения преобразователей давления	до 6 ³⁾	до 8 ³⁾	до 6	
Наличие входов для контроля питания подключенного расходомера	HO.	40	HO	
с сетевым питанием	да	да	да	
Возможность питания от батареи	да	да	да	
Возможность питания от внешнего источника	да	да	да	
Подключение вычислителя во внешние информационные системы	проводной или радиоинтерфейс ⁴⁾			
1) наличие минутных архивов зависит от исполнения				
тепловычислителей и указывается в паспорте на прибор;				
2) максимальное количество систем определяется для системы с				
одним трубопроводом;				
3) при подключении МАР к тепловычислителю количество систем				
теплоснабжения (охлаждения) и измерительных входов будет				
соответствовать их суммарному количеству;				
4) наличие дополнительного интерфейса определяется моделью				
установленного в тепловычислитель интерфейсного модуля.				

Тепловычислители соответствуют требованиям ТР ТС 020/2011. Декларация о соответствии: <u>EAЭС N RU Д-RU.PA07.B.00236/22</u> от <u>30.09.2022</u>, принята ООО НПП «ТЕПЛОВОДОХРАН» (390027, г.Рязань, ул.Новая, д.51В, литера Ж, неж.пом.Н2).

2 ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 2 – Метрологические характеристики

1 1 1	
Наименование характеристики	Значение
Диапазон измерений силы постоянного электрического тока ¹⁾ , мА	от 4 до 20
Диапазон измерений напряжения постоянного электрического тока ¹⁾ , В	от 0,4 до 2,0
Диапазон измерений частоты импульсного сигнала ²⁾ , Гц	от 0 до 5000
Диапазон измерения сопротивления, Ом:	
– для HCX Pt100, 100П	от 80,0 до 159,0
– для HCX Pt500, 500П	от 400,0 до 792,0
– для HCX Pt1000	от 800,0 до 1573,3
Диапазон значений температуры окружающего воздуха при преобразовании сигна <mark>ла</mark>	
сопротивления, °С	от -50 до +150
Диапазон значений температуры теплоносителя при преобразовании сигнала	
сопротивления, °С	от 0 до +150
Диапазон значений разности температур при вычислении энергии, °С	от +3 до +149
Диапазон значений давления при преобразовании токового сигнала, МПа	от 0 до 2,5
Пределы допускаемой приведенной к диапазону измерений погрешности при	
преобразовании токового сигнала в цифровой сигнал, %	±0,25
Пределы допускаемой приведенной к диапазону измерений погрешности при	
преобразовании сигнала напряжения постоянного тока в цифровой сигнал, %	±0,25
Пределы допускаемой относительной погрешности при преобразовании импульсного	
сигнала в значения объемного расхода, объема теплоносителя, %	±0,02
Пределы допускаемой абсолютной погрешности при преобразовании сигналов	.0.1
сопротивления в значение температуры, °С	±0,1
Пределы допускаемой абсолютной погрешности при преобразовании разности сигналов	10.02
сопротивления в значение разности температур, °C	±0,03
Пределы допускаемой относительной погрешности вычисления количества тепловой	±0,05
энергии/энергии охлаждения, %	±0,03
Пределы допускаемой относительной погрешности тепловычислителя при измерении	±(0.5±AT . /AT\3)
количества тепловой энергии/энергии охлаждения, % Пределы допускаемой относительной погрешности при измерении интервалов времени, %	$\pm (0.5 + \Delta T_{\text{min}}/\Delta T)^{3}$ ± 0.01
1) Возможность измерения силы постоянного электрического тока или напряжения постоян	/
I COUNTAINDE IN THE PART OF THE PROPERTY OF TH	

Возможность измерения силы постоянного электрического тока или напряжения постоянного электрического тока зависит от исполнения тепловычислителей и МАР и указывается в паспорте.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Количество дополнительных импульсных входов, шт., не менее	3
Диапазон показаний тепловой энергии, ГДж (Гкал)	от 0 до 99999999,999
Вес импульса импульсного входа, х1)/импульс	от 0,000001 до 9,999999
Условия эксплуатации:	
- температура окружающей среды, °С	от -10 до +50
- относительная влажность окружающего воздуха, %	от 20 до 95
- атмосферное давление, кПа	от 84 до 106,7
Габаритные размеры (ДхШхВ), мм, не более:	
для модификаций TB1 и MAP:	205x145x75
для модификаций ТВ2:	220x170x75
Масса, кг, не более	1
Напряжение питания, В	
- от встроенного элемента питания	3,6
- от внешнего источника питания	от 8 до 26
Потребляемая мощность, Вт, не более	5,0
Средний срок службы, лет	15
Средняя наработка на отказ, ч	85000
1) Единицы измерения определяются входящей физической величиной.	

²⁾ Диапазон измерений частоты импульсного сигнала зависит от исполнения тепловычислителей и МАР и указывается в паспорте. $^{3)}$ ΔT — измеряемая разность температур, $^{\circ}$ C;

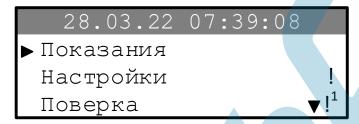
 $[\]Delta T_{min}$ – минимальная разность температур, измеряемая тепловычислителем, °С.

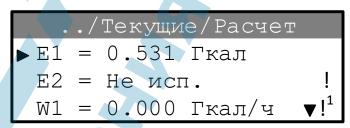
3 КОМПЛЕКТНОСТЬ

Комплект поставки тепловычислителя указан в таблице 4:

Таблица 4 – Комплектность тепловычислителя

Наименование	Обозначение	Количество	
Вычислитель тепловой энергии	ПУЛЬСАР1)	1 шт.	
Паспорт	ЮТЛИ.408837.001-01 ПС	1 экз.	
Руководство по эксплуатации	ЮТЛИ.408837.001-01 РЭ	1 <mark>эк</mark> з.	
1) Исполнение тепловычислителя определяется договором на поставку			


4 ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ


4.1 Идентификационное наименование ΠO : HTC-018, номер версии ΠO : 018-XX.YYY-ZZ.QQ, где 018 — номер версии метрологически значимой части; XX.YYY-ZZ.QQ — версия метрологически незначимой части, где буквы могут принимать следующие значения XX — от 01 до 99, YYY — от 001 до 999, ZZ— от 00 до 99, QQ — от 00 до 99.

4.2 MEHIO

Тепловычислитель оборудован дисплеем, клавиатурой и имеет многоуровневую структуру меню, что позволяет пользователю оперативно получать показания и настраивать параметры учёта тепловой энергии, не прибегая к помощи других технических средств.

Примеры представления информации на дисплее показаны на рисунке 1.


```
../Датчики/Объем G2 = 0.000 м^3/ч \blacktriangle G3 = He исп. ! \blacktriangleright Gм1 = 0.000 т/ч \blacktriangledown!
```

Рисунок 1 – Вид некоторых пунктов меню

Меню тепловычислителя состоит из разделов: «Показания», «Настройки», «Поверка», «Журнал» и «Инфо».

Перемещение курсора «▶» для выбора пункта меню осуществляется кнопками «↑» и «↓», вход в выбранный пункт — копкой «ВВОД». Возврат на предыдущий уровень меню происходит по кнопке «МЕНЮ».

Символы «▼» и «▲» показывают возможное направление прокрутки в меню.

Мигающий восклицательный знак «!» в правой части дисплея информирует о том, что в данный момент активна одна или более системных ошибок (отсутствует внешнее питание, низкий уровень заряда батареи и др.).

Индикация режимов доступа осуществляется буквенными обозначениями: «н» - настройка, «к» - калибровка.

Режим доступа «**н**» предназначен для конфигурации параметров учёта при вводе тепловычислителя в эксплуатацию и поверке, а «**к**» — только для заводской настройки. Если буквенное обозначение отсутствует, то активен режим «пользователя», в котором параметры конфигурации доступны только для просмотра. Включение/отключение уровней доступа производится с помощью соответствующих кнопок на плате тепловычислителя.

При наличии ошибок учёта по тепловому вводу отображается мигающие восклицательный знак с номером ввода « $!^1$ » и « $!^2$ » (для ТВ1 и ТВ2 соответственно).

При бездействии клавиатуры более 10 минут тепловычислитель переходит в главное меню (рисунок 1а).

4.2.1 МЕНЮ «ПОКАЗАНИЯ»

Раздел меню «Показания» позволяет просматривать текущие и архивные данные, характеризующие состояние теплоносителя, значения параметров учёта для выбранного теплового ввода (ТВ1, ТВ2), а также данные дополнительных импульсных входов в определённый момент времени. Структура данного раздела представлена на рисунке 2.

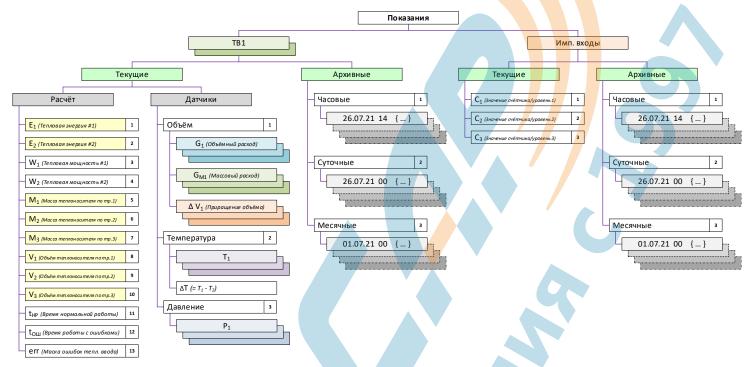


Рисунок 2 – Структура раздела меню «Показания»

Меню «ТВх/Текущие/Расчёт» предоставляет актуальные данные, получаемые расчётным способом на основе показаний датчиков. Список расчётных параметров приведён в таблице 5. Если параметр не используется (зависит от текущей конфигурации системы учёта), то вместо значения будет отображено «Не исп.», а если значение параметра не удалось вычислить, — «Ошибка».

Значения интегральных счётчиков энергий, масс и объёмов могут быть достаточно большими и не помещаться полностью в строку дисплея для отображения, тогда эти значения показываются в виде «f.123», где буква «f» означает, что выводится только дробная часть числа. Для просмотра значений целиком необходимо выбрать курсором нужную строку и нажать кнопку «ВВОД».

Ta	олица 5	– Pa	счётные	парав	иетры	тепл	ового ввода

Параметр	Описание				
E_1, E_2	Тепловые энергии 1 (основная) и 2 (дополнительная) (интегральные значения), Гкал (Мкал, ккал, Г				
$\mathbf{E}_1, \mathbf{E}_2$	МДж, МВт·ч, кВт·ч): 0.000 ÷ 9999999999.				
W_1, W_2	Мгновенные значения соответствующих тепловых мощностей, Гкал/ч (Мкал/ч, ккал/ч, ГДж/ч, МДж/ч,				
$M_1, M_2 M_3$ MBT, κ BT): $0.000 \div 9999999$.					
M_1, M_2, M_3	Масса теплоносителя (интегральное значение) по трубопроводам 1, 2 и 3, т: 0.000 ÷ 999999999.999.				
V_1, V_2, V_3	3 Объём теплоносителя (интегральное значение) по трубопроводам 1, 2 и 3, м³: 0.000 ÷ 999999999.999.				
t_{HP}	Время нормальной работы (интегральное значение), ч: 0 ÷ 999999.				
t _{OIII}	Время работы с ошибками (интегральное значение), ч: 0 ÷ 999999.				
Значение маски ошибок измерения/расчёта по тепловому вводу в шестнадцатеричном ф					
err	данный момент времени, таблица 2.				

Таблица 6 – Ошибки учёта по тепловому вводу

Описание Отсутствует питание расходомера, установленного на трубопроводе 1. Объёмный расход теплоносителя по трубопроводу 1 меньше минимального (G _{MN}). Собъёмный расход теплоносителя по трубопроводу 1 больше максимального (G _{MAX}). Температура теплоносителя в трубопроводе 1 меньше 0 °С. Температура теплоносителя в трубопроводе 1 больше 149.99 °С. Давление теплоносителя в трубопроводе 1 меньше 0 МПа. Давление теплоносителя в трубопроводе 1 больше максимального (Р _{МАX}). Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G _{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G _{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Температура теплоносителя в трубопроводе 2 меньше 0 °С. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 больше Р _{МАX} . Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 меньше 0 °С.				
Отсутствует питание расходомера, установленного на трубопроводе 1. Объёмный расход теплоносителя по трубопроводу 1 меньше минимального (G _{MIN}). Температура теплоносителя в трубопроводе 1 меньше 0 °С. Температура теплоносителя в трубопроводе 1 больше наксимального (G _{MAX}). Давление теплоносителя в трубопроводе 1 меньше 0 МПа. Давление теплоносителя в трубопроводе 1 больше максимального (Р _{МАX}). Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G _{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G _{MIN}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Температура теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 больше 0 МПа. Давление теплоносителя в трубопроводе 2 больше 0 МПа. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 меньше минимального (G _{MIN}). Температура теплоносителя в трубопроводе 3 меньше минимального (G _{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С.				
1 Объёмный расход теплоносителя по трубопроводу 1 меньше минимального (G _{MN}). 2 Объёмный расход теплоносителя в трубопроводе 1 больше максимального (G _{MAX}). 3 Температура теплоносителя в трубопроводе 1 меньше 0 °C. 4 Температура теплоносителя в трубопроводе 1 больше 149.99 °C. 5 Давление теплоносителя в трубопроводе 1 меньше 0 МПа. 6 Давление теплоносителя в трубопроводе 1 больше максимального (P _{MAX}). 7 Отсутствует питание расходомера, установленного на трубопроводе 2. 8 Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G _{MN}). 9 Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G _{MAX}). 10 Температура теплоносителя в трубопроводе 2 меньше 0 °C. 11 Температура теплоносителя в трубопроводе 2 меньше 0 МПа. 12 Давление теплоносителя в трубопроводе 2 меньше 0 МПа. 13 Давление теплоносителя в трубопроводе 2 больше Р _{МАX} . 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 меньше 0 °С. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
 Объёмный расход теплоносителя по трубопроводу 1 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 1 меньше 0 °С. Давление теплоносителя в трубопроводе 1 меньше 0 МПа. Давление теплоносителя в трубопроводе 1 больше максимального (Р_{МАX}). Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Температура теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 больше Р_{МАX}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 больше 149.99 °С. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
3 Температура теплоносителя в трубопроводе 1 меньше 0 °С. 4 Температура теплоносителя в трубопроводе 1 больше 149.99 °С. 5 Давление теплоносителя в трубопроводе 1 меньше 0 МПа. 6 Давление теплоносителя в трубопроводе 1 больше максимального (Р _{МАХ}). 7 Отсутствует питание расходомера, установленного на трубопроводе 2. 8 Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G _{MIN}). 9 Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G _{MAX}). 10 Температура теплоносителя в трубопроводе 2 меньше 0 °С. 11 Температура теплоносителя в трубопроводе 2 больше 149.99 °С. 12 Давление теплоносителя в трубопроводе 2 меньше 0 МПа. 13 Давление теплоносителя в трубопроводе 2 больше Р _{МАХ} . 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °С. 18 Температура теплоносителя в трубопроводе 3 меньше 0 МПа.				
4 Температура теплоносителя в трубопроводе 1 больше 149.99 °C. 5 Давление теплоносителя в трубопроводе 1 меньше 0 МПа. 6 Давление теплоносителя в трубопроводе 1 больше максимального (Р _{мах}). 7 Отсутствует питание расходомера, установленного на трубопроводе 2. 8 Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G _{міл}). 9 Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G _{мах}). 10 Температура теплоносителя в трубопроводе 2 меньше 0 °C. 11 Температура теплоносителя в трубопроводе 2 больше 149.99 °C. 12 Давление теплоносителя в трубопроводе 2 меньше 0 МПа. 13 Давление теплоносителя в трубопроводе 2 больше Р _{мах} . 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{міл}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{мах}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 меньше 0 °С. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
 Давление теплоносителя в трубопроводе 1 меньше 0 МПа. Давление теплоносителя в трубопроводе 1 больше максимального (P_{MAX}). Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Температура теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАX}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 больше 149.99 °С. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 Давление теплоносителя в трубопроводе 1 больше максимального (Р_{МАХ}). Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Температура теплоносителя в трубопроводе 2 больше 149.99 °С. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАХ}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 больше 149.99 °С. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 Отсутствует питание расходомера, установленного на трубопроводе 2. Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °C. Температура теплоносителя в трубопроводе 2 больше 149.99 °C. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАX}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °C. Температура теплоносителя в трубопроводе 3 больше 149.99 °C. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 8 Объёмный расход теплоносителя по трубопроводу 2 меньше минимального (G_{MIN}). 9 Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). 10 Температура теплоносителя в трубопроводе 2 меньше 0 °C. 11 Температура теплоносителя в трубопроводе 2 больше 149.99 °C. 12 Давление теплоносителя в трубопроводе 2 меньше 0 МПа. 13 Давление теплоносителя в трубопроводе 2 больше Р_{МАХ}. 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 Объёмный расход теплоносителя по трубопроводу 2 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 2 меньше 0 °С. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАХ}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °С. Температура теплоносителя в трубопроводе 3 больше 149.99 °С. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 Температура теплоносителя в трубопроводе 2 меньше 0 °C. Температура теплоносителя в трубопроводе 2 больше 149.99 °C. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАХ}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °C. Температура теплоносителя в трубопроводе 3 больше 149.99 °C. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
 Температура теплоносителя в трубопроводе 2 больше 149.99 °C. Давление теплоносителя в трубопроводе 2 меньше 0 МПа. Давление теплоносителя в трубопроводе 2 больше Р_{МАХ}. Отсутствует питание расходомера, установленного на трубопроводе 3. Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G_{MIN}). Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G_{MAX}). Температура теплоносителя в трубопроводе 3 меньше 0 °C. Температура теплоносителя в трубопроводе 3 больше 149.99 °C. Давление теплоносителя в трубопроводе 3 меньше 0 МПа. 				
12 Давление теплоносителя в трубопроводе 2 меньше 0 МПа. 13 Давление теплоносителя в трубопроводе 2 больше Р _{МАХ} . 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
13 Давление теплоносителя в трубопроводе 2 больше Р _{МАХ} . 14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
14 Отсутствует питание расходомера, установленного на трубопроводе 3. 15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
15 Объёмный расход теплоносителя по трубопроводу 3 меньше минимального (G _{MIN}). 16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
16 Объёмный расход теплоносителя по трубопроводу 3 больше максимального (G _{MAX}). 17 Температура теплоносителя в трубопроводе 3 меньше 0 °C. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
17 Температура теплоносителя в трубопроводе 3 меньше 0 °С. 18 Температура теплоносителя в трубопроводе 3 больше 149.99 °С. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
18 Температура теплоносителя в трубопроводе 3 больше 149.99 °C. 19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
19 Давление теплоносителя в трубопроводе 3 меньше 0 МПа.				
20 Давление теплоносителя в трубопроводе 3 больше Рмах.				
− 27 Зарезервировано.				
28 Разность температур теплоносителя в подающем (1) и обратном (2) трубопроводах меньше минимальной				
$\Delta T_{\rm MIN}$).				
29 Разность масс теплоносителя в подающем (1) и обратном (2) трубопроводах больше максимальной				
(ΔM_{MAX}) .				
30 Тепловая энергия 1 (основная) меньше нуля.				
31 Тепловая энергия 2 (дополнительная) меньше нуля.				
* Итоговая битовая маска ошибок формируется путём сдвига значения каждого бита влево в соответствии с его				
мером и последующим объединением по "ИЛИ".				

В меню «ТВхТекущие/Датчики» можно получить информацию о текущих показаниях датчиков объёма, температуры и давления, таблица 7. Если датчик не используется в текущей конфигурации системы учёта, то вместо значения выводится «Не исп.», а если показание выходит за диапазон измерения, — «Ошибка».

Таблица 7 – Показания датчиков теплового ввода

Параметр	Описание		
G_1, G_2, G_3	Мгновенное значение объёмного расхода по трубопроводам 1, 2 и 3, м ³ /ч: 0.000 ÷ 99999.		
G_{M1}, G_{M2}, G_{M3}	Мгновенное значение массового расхода по трубопроводам 1, 2 и 3, т/ч: 0.000 ÷ 99999.		
$\Delta V_1, \Delta V_2, \Delta V_3$	Приращение объёма по трубопроводам 1, 2 и 3, м ³ : 0.000 ÷ 99999.		
T_1, T_2, T_3	Мгновенное значение температуры теплоносителя в трубопроводах 1, 2 и 3, °C: 0.00 ÷ 149.99.		
ΔΤ	Мгновенное значение разности температур теплоносителя в подающем (1) и обратном (2		
трубопроводах, °C: 0.00 ÷ 149.99.			
P_1, P_2, P_3	Мгновенное значение давления теплоносителя в трубопроводах 1, 2 и 3, МПа: 0.000 ÷2.500		
1,12,13	$(0.00 \div 25.00 \text{ бар}, 0.00 \div 25.49 \text{ кгс/см}^2).$		

В меню «ТВх/Архивные» отображаются часовые, суточные и месячные значения интегральных счётчиков, счётчиков времени нормальной работы и действия нештатных ситуаций на момент окончания выбранного отчётного периода, а также маски ошибок за отчётный период. Каждая архивная запись содержит дату и час сохранения записи в память в формате «ДД.ММ.ГГ ЧЧ» и параметры, список которых представлен в таблице 8. Архив имеет кольцевую структуру и может содержать до 1488 часовых, 184 суточных и 60 месячных записей.

При просмотре архивных записей прокрутка внутри одной записи выполняется с помощью кнопок « \uparrow » и « \downarrow », переход между записями — кнопками « \leftarrow » и « \rightarrow », по кнопке «ВВОД» можно ввести дату архивной записи для быстрого перехода.

Таблица 8 – Архивируемые параметры теплового ввода

Параметр	Описание
T_1, T_2, T_3	Средневзвешенное или среднеарифметическое значение температуры по трубопроводам 1, 2 и 3 за отчётный период, °С.
V_{1}, V_{2}, V_{3}	Объём теплоносителя по трубопроводам 1, 2 и 3, м ³
P_1, P_2, P_3	Среднеарифметическое значение давления по трубопроводам 1, 2 и 3 за отчётный период, МПа (бар, кг·с/см²)
M_1, M_2, M_3	Масса теплоносителя по трубопроводам 1, 2 и 3, т
E_1, E_2	Тепловые энергии (основная и дополнительная), Гкал (Мкал, ккал, ГДж, МДж, МВт·ч, кВт·ч).
err	Значение маски ошибок измерения/расчёта по тепловому вводу в шестнадцатеричном формате. Если в течение отчётного периода возникала нештатная ситуация, то независимо от её длительности и количества повторений данные об этом попадают в архив.
t_{HP}	Время нормальной работы, ч
$t_{ m OIII}$	Время работы с ошибками, ч
tэп	Время отсутствия внешнего электропитания, ч
$t_{ m MIN}$	Время, когда объёмный расход по трубопроводу 1, 2 или 3 был меньше минимально установленного значения, ч
t_{MAX}	Время, когда объёмный расход по трубопроводу 1, 2 или 3 был больше максимально установленного значения, ч
$t_{\Delta T}$	Время, когда разность температур теплоносителя в подающем (1) и обратном (2) трубопроводах была меньше установленного предела (ΔT_{MIN}), ч
t_{Φ}	Время действия функционального отказа (показание хотя бы одного датчика температуры вне диапазона измерений), ч

Меню «Имп. входы/Текущие» предоставляет текущие значения интегральных счётчиков импульсов или входные значения логических уровней сигнала в зависимости от режима настройки импульсных входов. Если вход не используется, то вместо значения выводится «Не исп.».

Меню «Имп. входы/Архивные» аналогично меню «ТВх/Архивные». Перечень архивируемых данных представлен в таблице 9.

Таблица 9 – Архивируемые параметры импульсных входов

Параметр	Описание		
C_1 , C_2 , C_3	Значения интегральных счётчиков импульсов для соответствующих импульсных входов 1,2 и 3.		
* Если вход, настроен в режиме контроля логического уровня, то его данные не архивируются.			

4.2.2 МЕНЮ «НАСТРОЙКИ»

Раздел меню «Настройки» позволяет гибко настраивать процесс учёта, устанавливать дату/время, сетевой адрес тепловычислителя на линии связи, а также очищать архив и интегральные счётчики показаний. Структура раздела представлена на рисунке 4. Описание всех настраиваемых параметров приведено в таблицах 10 и 12.

Редактируемые параметры конфигурации делятся на две группы: выбираемые из списка (текущий активный элемент отмечается символом «•») и вводимые с клавиатуры, рисунок 3.

Вы	берите	KT3
■ Не ис	п.	Н
▶ Измер	. V	!
Расче	тE	

	Введите Тхв	
Знач.	= 05.00	Н
Min	= 0.00	!
Max	= 99.99	

Рисунок 3 – Редактируемые пункты меню

При редактировании параметров настроек наряду с кнопками «↑» и «↓» для изменения/выбора значений, также используются кнопки «←» и «→» для выбора редактируемого цифрового разряда (сдвига курсора « »). Сохранение изменений происходит по кнопке «ВВОД», а отмена — по кнопке «МЕНЮ».

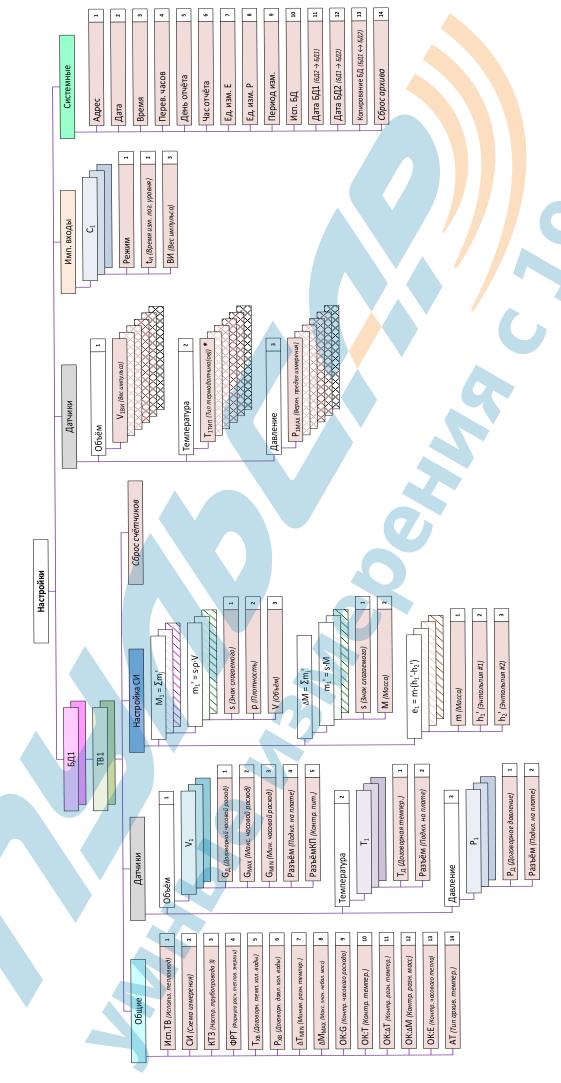


Рисунок 4 – Структура раздела меню «Настройки»

Таблица 10- Параметры меню «Настройки/БДх/ТВх/Общие»

	а 10— Параметры меню «Пастроики/вдх/ТВх/Оощис»
Параметр	Описание
	Использование теплового ввода в расчётах:
Исп. ТВ	• «Нет» - исключён из расчётов, при этом все расчётные значения, показания датчиков и архив недоступны для
Hen. 1B	просмотра в меню «Показания»;
	• «Да» - процесс учёта по тепловому вводу осуществляется в полном объёме в соответствии с заданными настройками.
	Схема измерения, в соответствии с которой выполняется учёт тепловой энергии: 0 ÷ 10 (СИ = 10 соответствует
СИ	настраиваемой пользователем схеме измерения).
СИ	Данный параметр должен настраиваться в первую очередь, т. к. е <mark>го изм</mark> ене <mark>ни</mark> е приводит к сбросу
	конфигурации разъёмов подключения датчиков, «КТ3» и «ФРТ» в начальное с <mark>ос</mark> тояние!
	Конфигурация трубопровода 3:
	• «Не исп.» - не используется в расчётах;
ICTO	• «Измер. V» - выполняется только измерение объёма;
KT3	• «Расчёт Е» - выполняется учёт тепловой энергии.
	Данный параметр должен настраиваться после параметра «СИ», т. к. его изменение приводит к сбросу
	конфигурации разъёмов подключения датчиков и «ФРТ» в начальное состояние!
ФРТ	Формула расчёта тепловой энергии: $0 \div 6$.
T_{XB}	Договорная температура холодной воды: 0.00 ÷ 99.99 °C.
	Договорное давление холодной воды: 0.000 ÷ 2.500 МПа.
P_{XB}	Диапазон значений зависит от единиц измерения.
	Минимально допустимая разность температур теплоносителя в подающем (1) и обратном (2) трубопроводах:
$\Delta T_{ m MIN}$	1.0 ÷ 3.0 °C.
43.5	Относительное максимальное значение разности масс теплоносителя по подающему (1) и обратному (2)
ΔM_{MAX}	трубопроводам: 0.00 ÷ 0.04.
	Опция контроля значения объёмного расхода теплоносителя по трубопроводам 1, 2 и 3 на выход за диапазон
	G _{MIN} ÷ G _{MAX} и наличия питания расходомера:
	• «Нет» - контроль не выполняется;
	• «Контр.» - устанавливается соответствующий флаг ошибки, если G <g<sub>MIN или G>G_{MAX} или отсутствует питание</g<sub>
OK:G	расходомера;
	• «С подст.» - устанавливается соответствующий флаг ошибки и дальнейшие расчёты выполняются по
	договорным значениям, если $G < G_{MIN}$ или $G > G_{MAX}$ или отсутствует питание расходомера;
	• «Не счит. Е» - устанавливается соответствующий флаг ошибки и расчёт энергий не выполняется, если
	G < G _{MIN} или G > G _{MAX} или отсутствует питание расходомера.
	Опция контроля значения температуры теплоносителя в трубопроводах 1, 2 и 3 на выход за диапазон измерений
	0 ÷ 150.00 °C:
OIC T	• «Не счит. Е» - устанавливается соответствующий флаг ошибки и расчёт энергий не выполняется, если T < 0 °C
ОК:Т	или T > 150.00 °C;
	• «С подст.» - устанавливается соответствующий флаг ошибки и дальнейшие расчёты выполняются по
	договорным значениям.
	Опция контроля разности температур теплоносителя в подающем и обратном трубопроводах на минимально
	допустимое значение (ΔT_{MIN}):
ΟΚ:ΔΤ	• «Не счит. Е» - устанавливается соответствующий флаг ошибки и расчёт энергий не выполняется, если T ₁ -
	$T_2 < \Delta T_{MIN}$;
	«Контр.» - устанавливается соответствующий флаг ошибки.
	Опция контроля масс теплоносителя в подающем и обратном трубопроводах (М1, М2) на превышение
	максимального значения их разности (ΔM_{MAX}):
	• «Нет» - контроль не выполняется;
	• «Контр. 1» - устанавливается соответствующий флаг ошибки, если $M_2-M_1>\Delta M_{MAX};$
ΟΚ:ΔΜ	• «Контр. 2» - устанавливается соответствующий флаг ошибки, если $ M_2 - M_1 > \Delta M_{MAX}$;
	• «С подст. 1» - устанавливается соответствующий флаг ошибки и текущим расчётным значениям масс M_1, M_2
	приравнивается их полусумма $(M_1 + M_2) / 2$, если $M_2 - M_1 > \Delta M_{MAX}$;
	«С подст. 2» - устанавливается соответствующий флаг ошибки и текущим расчётным значениям масс $M_1,\ M_2$
	приравнивается их полусумма $(M_1 + M_2) / 2$, если $ M_2 - M_1 > \Delta M_{MAX}$.
	Опция контроля значений энергий (E_1 , E_2), рассчитанных за период измерения, на отрицательное значение:
	• «Нет» - контроль не выполняется;
ОК:Е	• «Контр.» - устанавливается соответствующий флаг ошибки, если текущее расчётное значение энергии меньше нуля;
	«С подст.» - устанавливается соответствующий флаг ошибки и текущее расчётное значение энергии
	приравнивается нулю, если текущее расчётное значение энергии меньше нуля.
	Способ усреднения температур для архива за отчётный период:
AT	• «Ср. арифм.» - в архив сохраняются среднеарифметические значения температур;
Ai	«Ср. взвеш.» - в архив сохраняются средневзвешенные значения температур. Если выполнить расчёт
	средневзвешенного значения невозможно, то в архиве будет сохранено среднеарифметическое.

Взаимосвязи параметров СИ, КТ3 и ФРТ представлены в таблице 11. Таблица 11 — Схемы измерения (СИ)

T	аблица 11 – Схемы измерения (СИ)				
№	СИ	KT3	ФРТ	Расчёт масс	Расчёт энергий
Открытая система теплоснабжения, измерение расхода в трёх трубопроводах					
0	→ P1 V1 T1	2	1 2 3 0 1	$M_2 = \rho_2 \cdot V_2$ $M_3 = \rho_3 \cdot V_3$	$\begin{split} E_1 &= M_1 \cdot (h_1 - h_2) \\ E_2 &= \text{He MCII.} \\ E_1 &= M_1 \cdot (h_1 - h_2) + \Delta M \cdot (h_2 - h_x) \\ E_2 &= \Delta M \cdot (h_2 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) \\ E_2 &= \text{He MCII.} \\ E_1 &= M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= \Delta M \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= \Delta M \cdot (h_1 - h_2) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_1 \cdot (h_1 - h_2) + \Delta M \cdot (h_2 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ \end{split}$
	Закрытая система отопления, подп	итка в	торич	ного контура и	
1	→ P1 P V1 T1	2	0 1 2 3	$M_1 = \rho_1 \cdot V_1$ $M_2 = \rho_2 \cdot V_2$ $M_3 = \rho_3 \cdot V_3$ $\Delta M = M_3$	$\begin{split} E_1 &= M_1 \cdot (h_1 - h_2) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_1 \cdot (h_1 - h_2) + \Delta M \cdot (h_2 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ \end{split}$
	Открытая система теплоснабжения	, измер	рение	расхода в трубо	опроводах обратном и ГВС
2	→ P1 T1	2	0 1 2 3	$\begin{aligned} M_1 &= M_2 + M_3 \\ M_2 &= \rho_2 \cdot V_2 \\ M_3 &= \rho_3 \cdot V_3 \\ \Delta M &= M_3 \end{aligned}$	$\begin{split} E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) \\ E_2 &= M_3 \cdot (h_3 - h_x) \\ E_1 &= M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x) \\ E_2 &= M_3 \cdot (h_3 - h_x) \end{split}$
3a	крытая или открытая системы отопления, Г				
	расхода или теплово Р1	0, 1	о 1 2 3	$M_1 = \rho_1 \cdot V_1$ $M_2 = \rho_2 \cdot V_2$ $M_3 = \text{ не исп.}$ $\Delta M = M_1 - M_2$	Бопроводу 3 $E_1 = M_1 \cdot (h_1 - h_2)$ $E_2 = \text{не исп.}$ $E_1 = M_1 \cdot (h_1 - h_2) + \Delta M \cdot (h_2 - h_x)$ $E_2 = \Delta M \cdot (h_2 - h_x)$ $E_1 = M_2 \cdot (h_1 - h_2)$ $E_2 = \text{не исп.}$ $E_1 = M_2 \cdot (h_1 - h_2) + \Delta M \cdot (h_1 - h_x)$ $E_2 = \Delta M \cdot (h_1 - h_x)$
3	P2 T2 P V3 P T3 P	2	0 1 2 3	$\begin{aligned} M_1 &= \rho_1 \cdot V_1 \\ M_2 &= \rho_2 \cdot V_2 \\ M_3 &= \rho_3 \cdot V_3 \\ \Delta M &= M_1 - \\ M_2 \end{aligned}$	$E_{1} = M_{1} \cdot (h_{1} - h_{2})$ $E_{2} = M_{3} \cdot (h_{3} - h_{x})$ $E_{1} = M_{1} \cdot (h_{1} - h_{2}) + \Delta M \cdot (h_{2} - h_{x})$ $E_{2} = M_{3} \cdot (h_{3} - h_{x})$ $E_{1} = M_{2} \cdot (h_{1} - h_{2})$ $E_{2} = M_{3} \cdot (h_{3} - h_{x})$ $E_{1} = M_{2} \cdot (h_{1} - h_{2}) + \Delta M \cdot (h_{1} - h_{x})$ $E_{2} = M_{3} \cdot (h_{3} - h_{x})$

	родолжение таол. 11	Т_			_
№	СИ	KT3	ФРТ	Расчёт масс	Расчёт энергий
Зан	крытая система отопления, измерение расхо расхода (КТ3 = 1) или тег				
	расхода (K13 = 1) или тег	Шовои	энерг		этруоопроводу 3
	→ P1 V1 T1			$M_1 = \rho_1 \cdot V_1$ $M_2 = M_1$	$E_1 = M_1 \cdot (h_1 - h_2)$
	T HAMA	0, 1			$E_1 = W_1 (W_1 W_2)$ $E_2 = \text{He ucn.}$
			0	$\Delta M = \text{He ucn.}$	
4	→ D2 T2		0	$M_1 = \rho_1 \cdot V_1$	
		2			$E_1 = M_1 \cdot (h_1 - h_2)$
				· ·	$E_2 = M_3 \cdot (h_3 - h_x)$
				$\Delta M = \text{He ucn.}$	
За	крытая система отопления, измерение расхода (КТ3 = 1) или тег				
	расхода (КТЗ – Т) или Тег	Повои	энерг	``	э грубопроводу 3
	→ P1 T1			$M_1 = M_2$ $M_2 = \rho_2 \cdot V_2$	$E_1 = M_2 \cdot (h_1 - h_2)$
	l literatura de la composição de la com	0, 1		$M_3 = \text{не исп.}$	$E_2 = \text{He ucn.}$
_			2	$\Delta M = \text{He ucn.}$	
5	← I V2		2	$M_1 = M_2$	
		2			$E_1 = M_2 \cdot (h_1 - h_2)$
	$\begin{vmatrix} \frac{1}{P3} & \frac{V3}{T3} + \end{vmatrix}$				$E_2 = M_3 \cdot (h_3 - h_x)$
	<u> </u>			$\Delta M =$ не исп.	
1	упиковая система ГВС (подающий трубопр				
	тепловои энер	тии (к	13 – 2	2) по трубопров	зоду 3
	,			$M_1 = \rho_1 \cdot V_1$ $M_2 = \text{не исп.}$	$E_1 = M_1 \cdot (h_1 - h_x)$
	P1	0, 1		M_3 = не исп.	$E_2 = \text{He ucn.}$
_			4	ΔM = не исп.	
6			4	$M_1 = \rho_1 \cdot V_1$	
	$\frac{1}{P}$ $\frac{V3}{T3}$	2			$\mathbf{E}_1 = \mathbf{M}_1 \cdot (\mathbf{h}_1 - \mathbf{h}_{\mathbf{x}})$
	[P3]			$M_3 = \rho_3 \cdot V_3$	$E_2 = M_3 \cdot (h_3 - h_x)$
Т	The state of the s	DOT) 7		$\Delta M = \text{He ucn.}$	you con ayyon a ayyona (WT2 = 1) yyyy
1	упиковая система ГВС (обратный трубопро тепловой энерг				
		(11)		M_1 = не исп.	
	A	0, 1		$M_2 = \rho_2 \cdot V_2$	$E_1 = M_2 \cdot (h_2 - h_x)$
	→ P2 V2 T2 →			M_3 = не исп.	E_2 = не исп.
7			5	$\Delta M =$ не исп.	
,				\mathbf{M}_1 = не исп.	E M (1 1)
	T3 P V3 T3	2		$M_2 = \rho_2 \cdot V_2$ $M_3 = \rho_3 \cdot V_3$	$E_1 = M_2 \cdot (h_2 - h_x) E_2 = M_3 \cdot (h_3 - h_x)$
				$\Delta M = \rho_3 \cdot v_3$ $\Delta M = \text{He ucn.}$	$122 - 1013 \cdot (113 \cdot 11x)$
Туппа	ковые ГВС по полающему или обратному т	nyforr	ородо		L LULIЙ Канал измерения расуола (КТ2 — 1)
Тупиковые ГВС по подающему или обратному трубопроводам, дополнительный канал измерения расхода (КТ3 = 1) или тепловой энергии (КТ3 = 2) по трубопроводу 3					
		1		$M_1 = \rho_1 \cdot V_1$	
	→ P1	0 1		$M_2 = \rho_2 \cdot V_2$	$E_1 = M_1 \cdot (h_1 - h_x) + M_2 \cdot (h_2 - h_x)$
8		0, 1		$M_3 = \text{не исп.}$	E_2 = не исп.
	→ P2		6	ΔM = не исп.	
o		2		$\mathbf{M}_1 = \mathbf{\rho}_1 \cdot \mathbf{V}_1$	
	1 V3 ↓			$M_2 = \rho_2 \cdot V_2$ $M_1 = \rho_2 \cdot V_2$	$E_1 = M_1 \cdot (h_1 - h_x) + M_2 \cdot (h_2 - h_x)$
	P3 T3			$M_3 = \rho_3 \cdot V_3$ $\Delta M = \text{не исп.}$	$E_2 = M_3 \cdot (h_3 - h_x)$
		I	<u> </u>	ді у і – не исп.	<u> </u>

Таблица 12 – Параметры меню «Настройки/БДх/ТВх/Датчики»

Параметр	Описание				
	Настройки датчиков объёма для трубопроводов 1, 2 и 3 (V_1, V_2, V_3)				
$G_{\mathcal{I}}$	Договорное значение объёмного расхода по трубопроводу: $0.00 \div 99999.99 \text{ м}^3/\text{ч}$. Данный параметр используется для вычисления масс и энергий, если OK: $G = \text{«C подст.»}$ и $G < G_{\text{MIN}}$ или $G > G_{\text{MAX}}$, а также при отсутствии питания датчика, если такая функция включена.				
G_{MAX}	Максимальное значение объёмного расхода: $0.00 \div 99999.99 \text{ м}^3/\text{ч}$.				
$G_{ m MIN}$	Минимальное значение объёмного расхода: 0.00 ÷ 99999.99 м ³ /ч.				
Разъём	Разъём подключения датчика объёма, данные с которого будут использоваться в расчётах: X16.1, X16.2, X17.1, X17.2, X18.1, X18.2. Если показание датчика не используется, то необходимо выбрать «Не исп.».				
РазъёмКП	Разъём подключения сигнала контроля питания датчика объёма: X19.1, X19.2, X20.1. Если контроля питания датчика не используется, то значение поля необходимо установить «Не исп.». Для правильной работы этой функции соответствующий дополнительный импульсный вход должен быть настроен в режим «По уровню»!				
	Настройки датчиков температуры для трубопроводов 1, 2 и 3 (Т1, Т2, Т3)				
Тд	Договорное значение температуры теплоносителя в трубопроводе: $0.00 \div 150.00$ °C. Данный параметр используется для вычисления масс и энергий, если OK:T = «С подст.» и T < 0 или T > 150.00 °C.				
Разъём	Разъём подключения датчика температуры, данные с которого будут использоваться в расчётах: $X4 \div X9$. Если показание датчика не используется, то необходимо выбрать «Не исп.».				
	Настройки датчиков давления для трубопроводов 1, 2 и 3 (P1, P2, P3)				
Рд	Договорное значение давления теплоносителя в трубопроводе: $0.000 \div 2.500 \mathrm{M}\Pi a$. Диапазон значений зависит от единиц измерения.				
Разъём	Разъём подключения датчика давления, данные с которого будут использоваться в расчётах: X10.1, X10.2, X11.1, X11.2, X12.1, X12.2. Если показание датчика не используется, то необходимо выбрать «Не исп.».				

Меню «Настройки/БДх/ТВх/Настройка СИ» позволяет выполнить конфигурацию формул расчёта тепловых энергий для схемы измерения №10.

Итоговая масса теплоносителя по трубопроводам 1, 2 или 3 вычисляется по формуле:

$$M_i = m_1' + m_2' + m_3' \tag{1}$$

Каждое слагаемое формулы (1) описывается следующим произведением:

$$m_i' = s \cdot \rho \cdot V \tag{2}$$

Таблица 13 – Компоненты формулы (2)

Параметр	Описание
	Знак слагаемого m_j ':
s	 «Не исп.» - не участвует в расчётах (= 0);
5	• «-» - учитывается со знаком минус;
	• «+» - учитывается со знаком плюс.
	Плотность теплоносителя, используемая для вычисления m_j ':
	• «р ₁ » - плотность теплоносителя в трубопроводе 1;
ρ	• «р ₂ » - плотность теплоносителя в трубопроводе 2;
	• «р ₃ » - плотность теплоносителя в трубопроводе 3;
	• « ρ_x » - плотность холодной воды.
	Объём теплоносителя, используемый для вычисления <i>m_j</i> ':
V	• «V ₁ » - объём теплоносителя по трубопроводу 1;
V	• «V ₂ » - объём теплоносителя по трубопроводу 2;
	• «V ₃ » - объём теплоносителя по трубопроводу 3.

Разность масс рассчитывается по формуле:

$$\Delta M = m_1' + m_2' + m_3' \tag{3}$$

Каждое слагаемое формулы (3) описывается следующим произведением:

$$m_j' = s \cdot M \tag{4}$$

Таблица 14 – Компоненты формулы (4)

Параметр	Описание
	Знак слагаемого m_j ':
G	• «Не исп.» - не участвует в расчётах (=0);
S	• «-» - учитывается со знаком минус;
	• «+» - учитывается со знаком плюс.
	Масса теплоносителя, используемая для вычисления m_j ':
M	• «М ₁ » - итоговая масса теплоносителя по трубопроводу 1;
IVI	• «М ₂ » - итоговая масса теплоносителя по трубопроводу 2;
	• «М ₃ » - итоговая масса теплоносителя по трубопроводу 3.

Каждый компонент тепловой энергии (e₁, e₂, e₃, e₄) рассчитывается по формуле:

$$e_i = m' \cdot (h_1' - h_2')$$
 (5)

Таблица 15 – Компоненты формулы (5)

	Параметр	Описание
ſ		Масса теплоносителя, используемая для вычисления E_i ':
		• «М ₁ » - итоговая масса теплоносителя по трубопроводу 1;
	m'	• «М ₂ » - итоговая масса теплоносителя по трубопроводу 2;
		• «М ₃ » - итоговая масса теплоносителя по трубопроводу 3;
		• «ΔМ» - разность масс, полученная из формулы (3).
		Энтальпия теплоносителя, используемая для вычисления E_j ':
1		• «h ₁ » - энтальпия теплоносителя в трубопроводе 1;
	h ₁ ', h ₂ '	• «h ₂ » - энтальпия теплоносителя в трубопроводе 2;
	111, 112	• «h ₃ » - энтальпия теплоносителя в трубопроводе 3;
1		• «h _x » - энтальпия холодной воды;
1		«Не исп.» - не участвует в расчётах (=0).

Итоговое вычисление энергий Е₁, Е₂ производится по формулам:

$$E_1 = e_1 + e_2 \tag{6}$$

$$E_2 = e_3 + e_4 \tag{7}$$

Меню «Настройки/БДх/ТВх/Сброс счётчиков» позволяет выполнить сброс всех интегральных счётчиков выбранного теплового ввода: E_1 , E_2 , M_1 , M_2 , M_3 , V_1 , V_2 , V_3 , t_{HP} , t_{OII} , $t_{9\Pi}$, t_{MAX} , $t_{\Delta T}$, t_{Φ} . Содержимое архива при этом не затрагивается.

Таблица 16 – Параметры меню «Настройки/Датчики»

Параметр	Описание		
Х16.1ВИ Х18.2ВИ	Вес импульса датчика объёма: 0.000000 ÷ 9.999999 м ³ /имп.		
Т#тип	Тип датчиков температуры: Pt100, 100П, Pt500, 500П, Pt1000.		
X10.1P _{MAX} X12.2P _{MAX}	Верхний предел измерения датчика давления: 0.400 ÷ 2.500 МПа.		
X10.1PMAX X12.2PMAX	Диапазон значений зависит от единиц измерения.		
* Данные параметры однозначно привязаны к разъёмам подключения <mark>да</mark> тч <mark>ик</mark> ов!			

Таблица 17 – Параметры меню «Настройки/Имп. входы»

Параметр	раметр Описание			
	Настройки импульсных входов 1, 2 и 3 ($C_1(X19.1), C_2(X19.2), C_3(X20.1)$)			
	Режим работы импульсного входа:			
	• «Не исп.» - импульсный вход не используется;			
D	• «Счётный» - подсчёт произведения количества импульсов на их вес с накоплением;			
Режим	• «По уровню» - контроль логического уровня на входе.			
	При активации контроля питания расходомеров режим соответствующего импульсного входа,			
	должен быть настроен «По уровню»!			
t	Время измерения логического уровня на входе: 2 ÷ 10 с. Настройка актуальна, если импульсный			
t_{H}	вход настроен в режим «По уровню».			
ВИ	Вес импульса на импульсном входе: 0.000000 ÷ 9.999999 */имп. Настройка актуальна, если			
DII	импульсный вход настроен в режим «Счётный».			
*Еслі	и режим настройки импульсного входа не «Счётный», то его показания не архивируются!			

Таблица 18 – Параметры меню «Настройки/Системные»

таолица	16—Параметры меню «Пастроики/Системные»			
Параметр	Описание			
Адрес	Сетевой адрес тепловычислителя на линии связи: 1 ÷ 99999999.			
Дата	Дата Текущая дата в формате «ДД.ММ.ГГ»: 01.01.00 ÷ 31.12.99.			
Время	Текущее время в формате «ЧЧ:ММ:СС»: 00:00:00 ÷ 23:59:59.			
	Автоматический перевод часов:			
Потор мосор	• «Нет» - перевод часов не осуществляется;			
Перев. часов	• «Да» - перевод часов на час вперёд (летнее время) в 02:00 в последнее воскресенье марта, а на			
	час назад (зимнее время) в 03:00 в последнее воскресенье октября.			
День отчёта	День формирования месячной архивной записи: 1 ÷ 28.			
Час отчёта	Час формирования суточной архивной записи: 00 ÷ 23.			
	Единицы измерения тепловой энергии: { МДж, ГДж, ккал, Мкал, Гкал, кВт·ч, МВт·ч }.			
Ед. изм. Е	При изменении этого параметра необходимо выполнить очистку архива и интегральных счётчиков всех			
Ед. изм. Е	тепловых вводов, в противном случае, сопоставление архивных данных и значений счётчиков будет			
некорректным!				
Ед. изм. Р	Единицы измерения давления: { МПа, бар, кгс/см² }.			
	Период выполнения измерений и расчётов: { 6 с, 60 с, 600 с, Авто }.			
Период изм.	При питании от батареи рекомендуется выбирать настройку «Авто». В случае пропадания сетевого			
	питания настройка «6 с» игнорируется, вместо неё используется «60 с».			
	Используемая база данных параметров конфигурации:			
Исп. БД	 «БД1» - только база данных №1; 			
исп. вд	• «БД2» - только база данных №2;			
	• «Авто» - смена одной базы данных выполняется по дате.			
Дата БД1	Дата активации БД1 в формате «ДД.ММ ЧЧ»: 01.01 00 ÷ 31.12 23.			
дата вдт	Данный параметр используется, когда Исп. БД = «Авто».			
Дата БД2	Дата активации БД2 в формате «ДД.ММ ЧЧ»: 01.01 00 ÷ 31.12 23.			
дата вд2	Данный параметр используется, когда Исп. БД = «Авто».			
Копирование	Копирование параметров базы данных:			
БД	 «БД1 → БД2»; 			
ЪД	 «БД2 → БД1». 			
	Удаление всех часовых, суточных и месячных записей архива. Содержимое журнала и			
Сброс архив				
a	Выполнять сброс строго рекомендовано после настройки тепловычислителя и вводе его в			
	эксплуатацию!			

4.2.3 МЕНЮ «ПОВЕРКА»

Структура раздела представлена на рисунке 5.

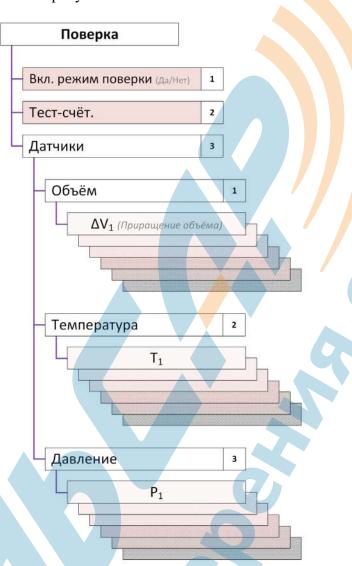


Рисунок 5 – Структура раздела меню «Поверка»

Включение/отключение режима поверки возможно только при уровнях доступа «н» и «к».

После включения режима поверки тепловычислитель выполняет следующие подготовительные операции:

- сохраняет текущие значения интегральных счётчиков (энергий, масс, объёмов и др.) в EEPROM;
- обнуляет значения интегральных счётчиков (энергий, масс, объёмов и др.) в ОЗУ;
- загружает поверочную БД;
- устанавливает период измерения равным 6 с (при наличии внешнего питания);
- блокирует доступ к параметрам из раздела «Настройки/Системные», кроме настроек даты/времени и единиц измерения;
 - приостанавливает архивирование;
 - добавляет запись в журнал событий с соответствующим кодом.

Возможность конфигурации тепловычислителя под требуемую схему измерения и логика его работы сохраняются в полном объёме, с той оговоркой, что параметры поверочной БД замещают собой параметры БД1 и БД2 для исключения их непреднамеренного изменения.

Когда режим поверки включен, то в правой части дисплея отображается мигающий символ «п».

При отключении режима поверки тепловычислитель возвращает все настройки (кроме даты/времени, если они были изменены) и значения интегральных счётчиков на момент до включения поверки.

Дополнительно для проверки вычислительной части ПО предусмотрен режим «калькулятора». С помощью него возможно задать тестовые значения входных параметров: приращений объёмов ΔV, температур Т и давлений Р, затем ввести заданное количество тестовых измерений («Тест-счётчик»). После выполнения измерений будут получены итоговые значения энергий, масс и объёмов, которые добавятся к уже накопленным величинам.

Сравнивая полученные величины с заранее известными значениями, можно оценить правильность вычислений, выполняемых тепловычислителем.

4.2.4 МЕНЮ «ЖУРНАЛ»

Данный раздел позволяет просматривать журнал событий тепловычислителя. Журнал имеет кольцевую структуру и может содержать до 2000 записей. Каждая запись имеет порядковый номер, дату и время возникновения (окончания) в формате «ДД.ММ.ГГ ЧЧ:ММ:СС» и код события в шестнадцатеричном формате. Перечень кодов представлен в таблице 19.

При просмотре журнала переход от одной записи к другой выполняется с помощью кнопок « \uparrow » и « \downarrow ».

Таблица 19 – Коды событий журнала

Код (hex)	Описание
$0000 \div E7$	Изменение параметра конфигурации пользователем через меню или по протоколу связи «Пульсар».
FF	
E800 ÷ E8	Запись значения канала по протоколу связи «Пульсар».
3F	
E905	Изменение даты/времени через меню или по протоколу связи «Пульсар».
EA00	Перезагрузка микроконтроллера тепловычислителя.
EA01	Перезагрузка микроконтроллера тепловычислителя с восстановлением данных в ОЗУ.
EA02	Перезагрузка микроконтроллера тепловычислителя с обнулением данных в ОЗУ.
F800 ÷ F8	Событие установки флага ошибки тепловычислителя, где код события = F800 + номер флага (бита)
1F	ошибки (таблица 20).
FC00 ÷ F	Событие сброса флага ошибки тепловычислителя, где код события = FC00 + номер флага (бита) ошибки
C1F	(таблица 20).
F820 ÷ F8	Событие установки флага ошибки учёта по тепловому вводу №1, где код события = F820 + номер флага
3F	(бита) ошибки (таблица 6).
$FC20 \div F$	Событие сброса флага ошибки учёта по тепловому вводу №1, где код события = FC20 + номер флага
C3F	(бита) ошибки (таблица 6).
F840 ÷ F8	Событие установки флага ошибки учёта по тепловому вводу №2, где код события = F840 + номер флага
5F	(бита) ошибки (таблица 6).
FC40 ÷ F	Событие сброса флага ошибки учёта по тепловому вводу №2, где код события = FC40 + номер флага
C5F	(бита) ошибки (таблица 6).

4.2.5 МЕНЮ «ИНФО»

В состав раздела меню «Инфо» входят следующие части:

- «О приборе»;
- «Контрольные суммы»;
- «V_{ват}» напряжение батареи в мВ;
- «err» маска аппаратных ошибок тепловычислителя.

Меню «О приборе» содержит информацию об идентификационных данных ПО, заводском номере тепловычислителя и контрольной сумме программного обеспечения в шестнадцатеричном формате (CRC32).

Меню «Контрольные суммы» содержит перечень контрольных сумм параметров учёта в шестнадцатеричном формате (CRC16).

Таблица 20 – Системные ошибки тепловычислителя

Номер	Описание
бита	
0	Сброс ОЗУ микроконтроллера.
1	Отсутствует внешнее питание.
2	Батарея разряжена.
3	Неисправность энергонезависимой памяти (EEPROM).
4	Ошибка восстановления данных из кэша в энергонезависимой памяти (EEPROM) при отключении
4	режима поверки.
4 77	

^{*} Итоговая битовая маска ошибок формируется путём сдвига значения каждого бита влево в соответствии с его номером и последующим объединением по "ИЛИ".

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

По степени защиты от поражения электрическим током тепловычислитель относится к классу III по ГОСТ 12.2.007.0.

<u>ПРЕДУПРЕЖДЕНИЕ</u>

- При ненадлежащем обращении с литиевой батареей возникает опасность взрыва.
- о Батареи запрещается: заряжать; вскрывать; замыкать накоротко; перепутывать полюса; нагревать свыше 100 °С; подвергать воздействию прямых солнечных лучей.
 - о На батареях не должна конденсироваться влага.
- о При необходимости транспортировки следует соблюдать предписания по обращению с опасными грузами для соответствующего вида транспорта (обязательная маркировка).
 - Использованные литиевые батареи относятся к специальному виду отходов.

6 ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ, РАЗМЕЩЕНИЕ, МОНТАЖ

6.1 ПОДГОТОВКА ИЗДЕЛИЯ К УСТАНОВКЕ НА МЕСТЕ ЭКСПЛУАТАЦИИ

Перед установкой тепловычислителя проверьте его комплектность в соответствии с паспортом. Выполните внешний осмотр с целью выявления механических повреждений корпуса прибора. Если прибор находился в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать его в указанных условиях не менее 2 ч.

ВНИМАНИЕ! При обнаружении неисправности тепловычислителя эксплуатация прибора запрещена!

6.2 РАЗМЕЩЕНИЕ

При выборе места для установки руководствоваться следующими критериями:

- не следует устанавливать тепловычислитель в местах, где возможно присутствие пыли или агрессивных газов;
 - не следует располагать вблизи мощных источников электромагнитных и тепловых излучений;
 - не следует располагать в местах, подверженных тряске, вибрации или воздействию воды.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Для безопасной эксплуатации необходимо осуществлять техническое обслуживание, которое должно проводиться лицами, изучившими настоящее руководство по эксплуатации.

Техническое обслуживание состоит из:

- 1) периодического технического обслуживания в процессе эксплуатации;
- 2) технического обслуживания перед проведением поверки.

Периодическое обслуживание заключается в осмотре внешнего вида тепловычислителя, в снятии и сверке измерительной информации, подводке внутренних часов, в устранении причин, вызывающих ошибки в работе.

Осмотр рекомендуется проводить не реже 1 раза в 6 месяцев, при этом проверяется надежность крепления прибора на месте эксплуатации, состояние кабельных линий и сохранность пломб.

Снятие информации следует проводить с использованием персонального компьютера через интерфейс.

Обслуживание перед поверкой заключается в замене литиевой батареи. Замена батареи осуществляется в условиях сервисного центра после вскрытия пломбы корпуса тепловычислителя.

8 ПОВЕРКА

Тепловычислитель подлежит поверке, согласно МП-544/01-2023 «Вычислители тепловой энергии ПУЛЬСАР. Методика поверки». Периодическая поверка проводится один раз в 4 года.

Подключение средств поверки осуществляется в соответствии с разделом 6 и приложением Γ . Для определения относительной погрешности измерений интервалов времени дополнительно требуется установить перемычку между контактами 1 и 3 разъема X20 в соответствии с рисунком 6:

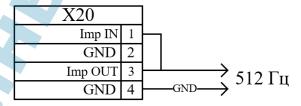


Рисунок 6 – Установка перемычки для вывода сигнала 512 Гц

Определение относительной погрешности вычисления количества тепловой энергии с использованием подстановочных значений осуществляется в соответствии с п 4.2.3 настоящего РЭ.

9 ПРАВИЛА ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ

- 9.1 Тепловычислитель в упаковке предприятия-изготовителя следует транспортировать любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.
 - 9.2 Предельные условия хранения и транспортирования:
 - 1) температура окружающего воздуха от минус 40 до плюс 55 °C
 - 2) относительная влажность воздуха не более 95%;
 - з) атмосферное давление не менее 61кПа (457 мм рт. ст.).
- 9.3 Хранение приборов в упаковке на складах изготовителя и потребителя должно соответствовать условиям хранения «5» по ГОСТ 15150.
- 9.4 Утилизация прибора производится в соответствии с методикой, утвержденной Государственным комитетом РФ по телекоммуникациям.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 10.1 Изготовитель гарантирует соответствие изделия требованиям технических условий ЮТЛИ. 408837.001 ТУ «Вычислитель тепловой энергии ПУЛЬСАР. Технические условия» при использовании по назначению, соблюдении потребителем условий эксплуатации, хранения, транспортирования и монтажа.
- 10.2 Гарантийный срок на прибор 3 года с даты первичной поверки до ввода в эксплуатацию при соблюдении условий п.10.1.
- 10.3 Изготовитель не принимает рекламации, если тепловычислитель вышел из строя по вине потребителя из-за неправильной эксплуатации или при несоблюдении указаний, приведенных в настоящем руководстве.
- 10.4 В гарантийный ремонт принимаются тепловычислители полностью укомплектованные и с настоящим руководством.

По всем вопросам, связанным с качеством продукции, следует обращаться на предприятие-изготовитель:

Россия, 390027, г. Рязань, ул. Новая, 51В, лит. Ж, неж. пом.Н2 Т./ф. (4912) 24-02-70 e-mail: info@pulsarm.ru http://www.pulsarm.ru

ГАБАРИТНЫЕ РАЗМЕРЫ ТВ1, ТВ2, МАР

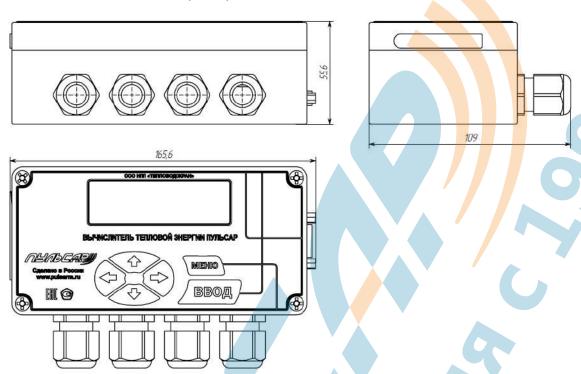


Рисунок А.1 – Габаритные размеры ТВ1, МАР

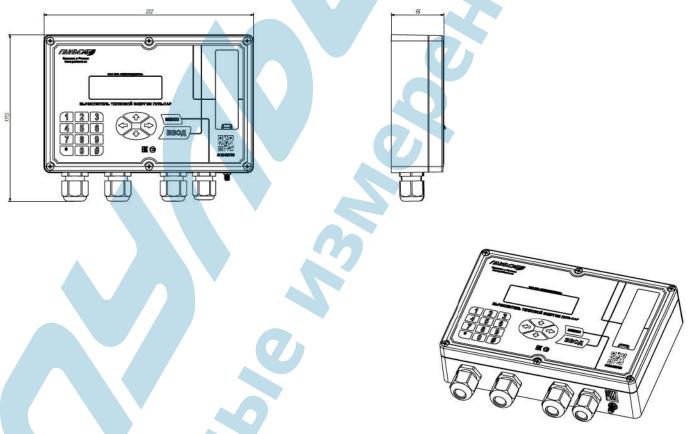


Рисунок А.2 – Габаритные размеры ТВ2

РАСПОЛОЖЕНИЕ РАЗЪЕМОВ ВЫЧИСЛИТЕЛЯ ТЕПЛОВОЙ ЭНЕРГИИ ПУЛЬСАР ТВ1

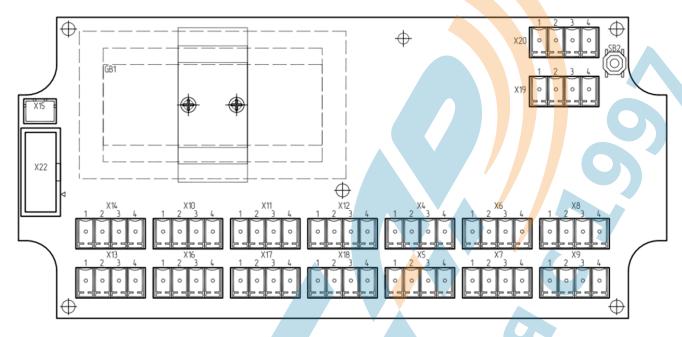


Рисунок Б.1 – Расположение разъемов на вычислителе тепловой энергии

- Х4..Х9 – разъемы для подключения термопреобразователей

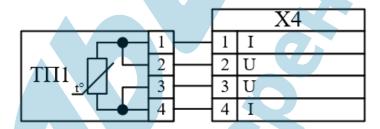


Рисунок Б.2 – Пример подключения термопреобразователей сопротивления

- X10, X14 разъемы для подключения преобразователей давления по напряжению
- Х11..Х12 разъемы для подключения преобразователей давления по току

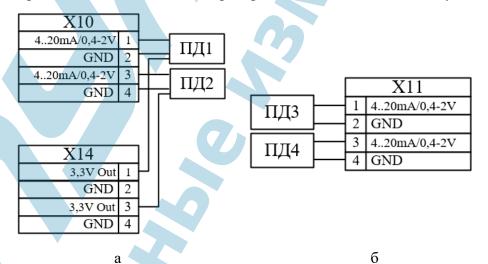


Рисунок Б.3 – Пример подключения преобразователей давления

- а с выходом по напряжению
- б с выходом по току

- X16..X20.2 разъемы для подключения преобразователей расхода с импульсным выходом
- X20.3, X20.4 разъем импульсного выхода вычислителя тепловой энергии

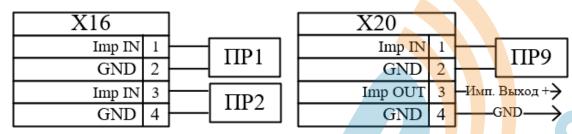


Рисунок Б.4 – Пример подключения преобразователей расхода с импульсным выходом и контакты для подключения к импульсному выходу вычислителя тепловой энергии

- X13 – разъем для подключения по интерфейсу RS-485

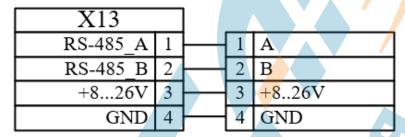


Рисунок Б.5 – Пример подключения вычислителя тепловой энергии по интерфейсу связи RS-485

СХЕМА ПОДКЛЮЧЕНИЙ ВЫЧИСЛИТЕЛЯ ТЕПЛОВОЙ ЭНЕРГИИ ПУЛЬСАР ТВ1

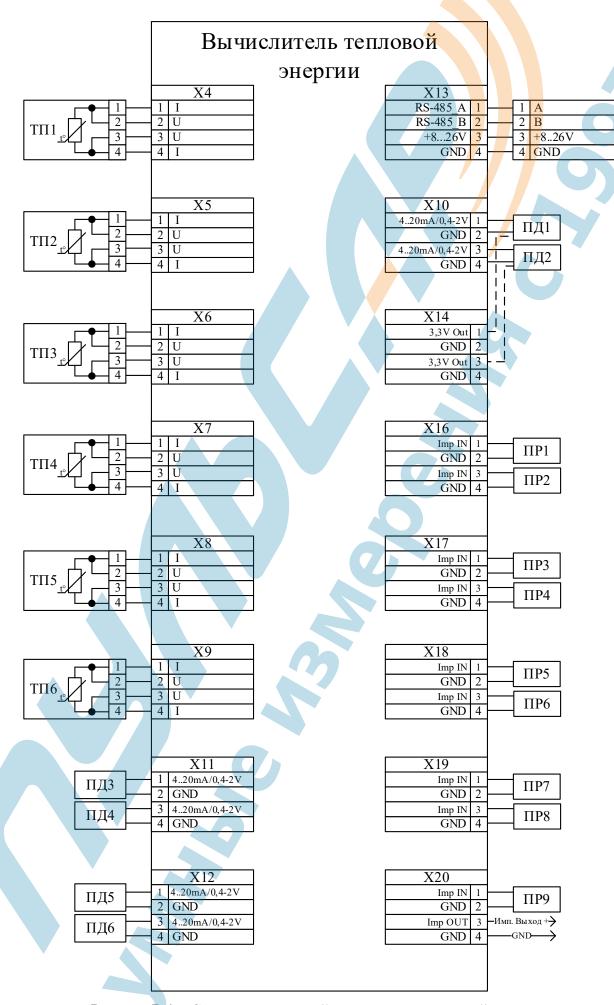


Рисунок В.1 – Схема подключений вычислителя тепловой энергии

СХЕМА ПОДКЛЮЧЕНИЯ ВЫЧИСЛИТЕЛЯ ТЕПЛОВОЙ ЭНЕРГИИ ПУЛЬСАР ТВ1 ПРИ ПРОВЕДЕНИИ ПОВЕРКИ

Рисунок Г.1 – Схема подключений вычислителя тепловой энергии при проведении поверки