Лист № Всего листов

1

5

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители-вычислители многоканальные ЭЛТЕКО ИВ

Назначение средства измерений

Измерители-вычислители многоканальные ЭЛТЕКО ИВ (далее - вычислитель) предназначены для измерения аналоговых электрических сигналов (частота, количество импульсов, сопротивление, сила постоянного тока) поступающих от первичных измерительных преобразователей, установленных на узлах учета тепловой энергии, и преобразования результатов измерений в значения физических величин (объемный расход, объем, температура, разность температур, избыточное давление). Далее вычислитель производит вычисление: количества теплоносителя (объем¹, массовый расход, масса), тепловой мощности, количества теплоты (тепловой энергии), затем реализует обработку полученной измерительной информации: суммирование нарастающим во времени итогом, формирование, хранение и передачу на внешние устройства и во внешние информационно-измерительные системы этих данных.

Описание средства измерений

Принцип действия вычислителей состоит в измерении выходных сигналов, поступающих от первичных преобразователей объемного расхода (объема), температуры, разности температур, избыточного давления, их преобразования в значения физических величин и вычислении объема, массового расхода (массы), тепловой мощности, количества теплоты (тепловой энергии). В соответствии с ГОСТ Р 51649-2000 является тепловычислителем.

По структуре и функциональным признакам вычислители относятся к комплексным компонентам измерительных систем по ГОСТ Р 8.596-2002.

Вычислители выполнены в пластмассовом корпусе, в котором размещается многофункциональное многоканальное микропроцессорное измерительно-вычислительное устройство. Внешний вид вычислителей представлен на рисунке 1. На передней панели корпуса находятся клавиши управления и жидкокристаллический дисплей, который предназначен для отображения результатов измерений и вычислений, а также данных о настройках. С помощью стандартного последовательного интерфейса (RS-232; RS-485; USB, Ethernet) вычислители могут осуществлять связь с персональным компьютером для снятия быть измерительной информации И настройки, a подключенными также автоматизированным диспетчерским и информационно-измерительным системам.

Вычислители имеют встроенные часы реального времени, обеспечивающие определение и индикацию времени работы в режиме измерения количества теплоносителя.

Вычислители обеспечивают выполнение следующих функций:

- измерение (вычисления) объемного расхода теплоносителя по частотному или объема по числоимпульсному выходному сигналу первичных преобразователей;
- измерение (вычисления) температуры и разности температур теплоносителя по сигналам от термопреобразователей сопротивления;
- измерение (вычисление) избыточного давления теплоносителя по сигналам от средств измерения давления с унифицированным токовым выходным сигналом;
- вычисление средних температур и разности температур, количества теплоносителя (объем¹, массовый расход, масса), тепловой мощности, количества теплоты (тепловой энергии) в соответствии с заложенными алгоритмами в зависимости от схем узла учета;
 - архивирование часовых, суточных и месячных измеренных и вычисленных значений;
 - ввод настроечных параметров и защиту данных от несанкционированного изменения;
 - отображение текущих, архивных и настроечных параметров на дисплее;
 - ведение календаря и времени суток и учет времени работы.

^{1 —} вычислители производят вычисление объема, если в качестве первичного преобразователя используется средство измерения объемного расхода с частотным выходным сигналом.

Для исключения возможности преднамеренных и непреднамеренных изменений измерительной информации вычислители пломбируются, схема пломбировки в соответствии с рисунком 2. Предприятие-изготовитель наносит наклейки на места обозначенные цифрами 1 и 2 с целью исключить возможность несанкционированной разборки вычислителя и вмешательства в его работу. В местах обозначенных цифрами 3 и 4 находятся микропереключатели необходимые для перевода вычислителя в режим «Поверка», пломбируются поверителем после проведения поверки.

Вычислители выпускаются в двух модификациях: ЭЛТЕКО ИВ.к1 и ЭЛТЕКО ИВ.к2. Дополнительно к функциям базовой модификации ЭЛТЕКО ИВ.к1 в модификации ЭЛТЕКО ИВ.к2 реализована возможность приема и передачи данных с использованием сотовой связи стандарта EGSM900/1800, через встроенный в вычислитель GSM-модем.

Степень защиты вычислителя, обеспечиваемая оболочкой, IP20 по ГОСТ 14254-96.

Рисунок 1 – Общий вид вычислителя

Рисунок 2 – Схема пломбировки

Программное обеспечение

Вычислитель является программноуправляемым устройством, реализующим обработку входных данных (измеренных значений) в соответствии с заложенными алгоритмами по МИ 2412-97 в зависимости от схем узлов учета тепловой энергии.

В функции ПО входит сбор измерительной информации о температуре, давлении и объемном расходе (объеме) теплоносителя, ее обработка (вычисление объема и массы теплоносителя, тепловой мощности, количества теплоты (тепловой энергии)), представление на дисплее результатов измерений, хранение измерительной информации во flash памяти и передача этих данных через интерфейсы связи.

 ΠO устанавливается в энергонезависимую память вычислителя при изготовлении, в процессе эксплуатации данное ΠO не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПО ЭЛТЕКО ИВ
Номер версии (идентификационный номер) ПО	7xxx
Цифровой идентификатор (контрольная сумма) метрологически значимой части ПО	1d8ccd061914f99b0cb95803249547c2
Алгоритм вычисления цифрового идентификатора ПО	MD5

Пределы допускаемой погрешности вычислителей установлены с учетом влияния ПО на метрологические характеристики.

Конструкция вычислителя исключает возможность несанкционированного влияния на ПО и измерительную информацию. Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений в соответствии с Р 50.2.077-2014 - высокий.

Метрологические и технические характеристики

Количество входов для подключения первичных измерительных преобразователей:

- с частотным или числоимпульсным выходным сигналом	5
- термопреобразователей сопротивления по ГОСТ 6651-2009	5
- с унифицированным токовым выхолным сигналом	5

Параметры входов для подключения первичных измерительных преобразователей:

- с частотным или числоимпульсным выходным сигналом

частота следования импульсов, кГц от 0,004 до 2,5 длительность импульса, мкс, не менее 100 амплитуда импульса, В от 22 до 26

- термопреобразователей сопротивления по ГОСТ 6651-2009

с номинальной статической характеристикой 100 Π; Pt100

- с унифицированным токовым выходным сигналом

сила постоянного тока, мА от 4 до 20

Пределы допускаемой относительной погрешности измерения входного аналогового сигнала (частотный или числоимпульсный) и преобразования его в значение объемного расхода, объема и

вычисления массы, % ± 0.1

Пределы допускаемой абсолютной погрешности измерения входного аналогового сигнала (сопротивление) и преобразования

его в значение температуры, °С $\pm (0,2+0,0005 \times \theta)$

Пределы допускаемой относительной погрешности измерения входных аналоговых сигналов (сопротивлений), преобразования и

вычисления разности температур, % $\pm (0.35 + \Delta t_{min}/\Delta t)$

Пределы допускаемой приведенной погрешности измерения входного аналогового сигнала (сила постоянного тока) и преобразования его в значение избыточного давления, % Пределы допускаемой относительной погрешности измерения

 ± 0.5

(вычисления) тепловой мощности и количества теплоты (тепловой

энергии), % $\pm (0.5 + Dt_{min}/Dt)$

Пределы допускаемой относительной погрешности измерения текущего времени, %

 ± 0.01 Выходные сигналы интерфейса RS-232; RS-485, USB, Ethernet

Весовой коэффициент импульса, л/импульс от 0,001 до 1000 Емкость показаний дисплея 7 знаков (от 0 до 999999)

Условия эксплуатации:

- температура окружающей среды (в помещении),°С от 5 до 55

- относительная влажность при температуре 35 °C и более низких

80 температурах без конденсации влаги, %, не более Напряжение электрического питания от сети постоянного тока, В 24 + 2

Потребляемый ток, мА, не более 350 Габаритные размеры, мм 200x195x60

Масса, кг, не более 0.85

Примечание:

 Δt_{\min} ; Δt – соответственно минимальная разность и измеряемая разность температур; θ – измеряемое значение температуры.

Знак утверждения типа

наносится фотохимическим методом на переднюю панель вычислителя и типографским способом в левом верхнем углу на титульные листы паспорта и руководства по эксплуатации.

Комплектность средства измерений

Измеритель-вычислитель ЭЛТЕКО ИВ	1 шт.
Паспорт, 4218-005-11361385-2014 ПС	1 экз.
Руководство по эксплуатации, 4218-005-11361385-2014 РЭ	1 экз.
Методика поверки, $4218-005-11361385-2014$ МП	1 экз.

Поверка

осуществляется в соответствии с документом 4218-005-11361385-2014 МП «Измерителивычислители многоканальные ЭЛТЕКО ИВ. Методика поверки», утвержденным ГЦИ СИ ЗАО КИП «МЦЭ» $16.07.2014~\Gamma$.

Основные средства поверки:

- частотомер электронно-счетный Ч3-63/1, диапазон частот от 0,01 до 2×10^8 Гц, относительная погрешность $\delta f = \pm (|\delta_o| + |f_x|t_{cq}|^{-1})$, где f_x измеряемая частота, Гц; δf относительная погрешность опорного генератора (встроенного и внешнего); t_{cq} время счета частотомера, c;
- калибратор-измеритель унифицированных сигналов эталонный ИКСУ-260, ТУ 4381-072-13282997-07, диапазон воспроизведения и измерения силы постоянного тока от 0 до 25 мА, пределы допускаемой абсолютной погрешности (10^{-4} I+1) мкА, диапазон воспроизведения температуры (сопротивление постоянного тока) для термопреобразователей сопротивления типа Pt100 от минус 200 °C до плюс 200 °C, пределы допускаемой основной абсолютной погрешности воспроизводимых температур \pm 0,03 °C;

Сведения о методиках (методах) измерений

изложены в документе «Измерители-вычислители многоканальные ЭЛТЕКО ИВ. Руководство по эксплуатации», 4218-005-11361385-2014 РЭ.

Нормативные и технические документы, устанавливающие требования к вычислителям

- 1 ГОСТ Р 51649-2000. «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия».
- 2 ГОСТ Р 8.596-2002. «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 3 ТУ 4218-005-11361385-2014. «Измерители-вычислители многоканальные ЭЛТЕКО ИВ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при осуществлении торговли.

Изготовитель

Общество с ограниченной ответственностью «Электротехническая Компания – Приборы Автоматики» (ООО «ЭТК – Прибор»)

Адрес: 127055, РФ, г. Москва, ул. Сущевская, д. 21, стр. 4.

тел/факс: (495) 663 60 50. e-mail: <u>eltecom@eltecom.ru</u>

www.eltecom.ru

Лист № 5 Всего листов 5

Испытательный центр

Государственный центр испытаний средств измерений ЗАО КИП «МЦЭ» (ГЦИ СИ ЗАО КИП «МЦЭ»).

Адрес: 125424, РФ, г. Москва, Волоколамское шоссе, д. 88, стр. 8.

тел: (495) 491 78 12, (495) 491 86 55 e-mail: sittek@mail.ru, kip-mce@nm.ru

Аттестат аккредитации ГЦИ СИ ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № 30092-10 от 01.05.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.п. « »	Ф.В. Булыгин	
	«	»