

РАСХОДОМЕР-СЧЕТЧИК **ЭЛЕКТРОМАГНИТНЫЙ**

ВЗЛЕТ ЭМ

ИСПОЛНЕНИЯ ЭКСПЕРТ-9ххМх

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Часть І

ШКСД.407112.000 РЭ

Россия, Санкт-Петербург

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015)

АО «Взлет»

ул. Трефолева, 2БМ, г. Санкт-Петербург, РОССИЯ, 198097

E-mail: mail@vzljot.ru

www.vzljot.ru

Call-центр 28-800-333-888-7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ГАРАНТИИ ИЗГОТОВИТЕЛЯ	5
ОБОЗНАЧЕНИЯ ИСПОЛНЕНИЙ	6
1. ОПИСАНИЕ И РАБОТА	7
1.1. Назначение	7
1.2. Технические характеристики	8
1.3. Метрологические характеристики	10
1.4. Состав	11
1.5. Устройство и работа	12
1.5.1. Принцип работы	12
1.5.2. Устройство расходомера	13
1.5.3. Уровни доступа	14
1.5.4. Внешние связи	16
1.5.5. Регистрация результатов работы	23
1.5.6. Конструкция	24
1.6. Маркировка и пломбирование	27
2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	29
2.1. Эксплуатационные ограничения	29
2.2. Выбор типоразмера расходомера	30
2.3. Подготовка к работе	34
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	36
3.1. Проверка технического состояния	36
3.2. Поверка	37
4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	38
ПРИЛОЖЕНИЕ А. Вид составных частей расходомера	39
ПРИЛОЖЕНИЕ Б. Схемы входа и выходов	48
ПРИЛОЖЕНИЕ В. Источник вторичного питания	51

Настоящий документ распространяется на расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» модификации ЭКСПЕРТ (далее – расходомер) и предназначен для ознакомления с устройством и порядком эксплуатации расходомеров исполнений ЭКСПЕРТ-911МИ, -912МО, -912МА, -921МИ, -922МО, -922МА. Часть І содержит техническое описание и порядок использования расходомера при эксплуатации, часть ІІ — описание настроек прибора на объекте эксплуатации и методику поверки.

В связи с постоянной работой по усовершенствованию прибора, в расходомере возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности прибора.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

DN - диаметр условного прохода;

БИ - блок измерения;

ЖКИ - жидкокристаллический индикатор;

ПК - персональный компьютер;

ППР - первичный преобразователь расхода;

ЭДС - электродвижущая сила;

ЭМР - электромагнитный расходомер.

* * *

- Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» зарегистрирован в Государственном реестре средств измерений РФ под № 30333-10 (свидетельство об утверждении типа средств измерений RU.C.29.006.A № 40672).
- Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» соответствует требованиям Технического регламента Таможенного союза ТР ТС 020/2011 «Электромагнитная совместимость технических средств» (регистрационный номер декларации о соответствии ТС N RU Д-RU.AB72.B.02201).
- Расходомер-счетчик «ВЗЛЕТ ЭМ» разрешен к применению для учета теплоносителя в водяных системах теплоснабжения.

Удостоверяющие документы размещены на сайте www.vzljot.ru

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- І. Изготовитель гарантирует соответствие расходомеров «ВЗЛЕТ ЭМ» модификации ЭКСПЕРТ всех исполнений техническим условиям в пределах гарантийного срока, указанного в паспорте на изделие, при соблюдении следующих условий:
 - 1. Хранение, транспортирование, монтаж и эксплуатация изделия осуществляются в соответствии с требованиями эксплуатационной документации.
 - 2. Монтаж и пусконаладочные работы проведены специализированной организацией, имеющей право на выполнение данного вида работ.
- II. В случае выхода оборудования из строя, гарантийный ремонт производится в головном или региональных сервисных центрах, авторизированных по работе с оборудованием торговой марки Взлет, при соблюдении условий эксплуатации и требований, указанных в эксплуатационной документации.
- III. Изготовитель не несет гарантийных обязательств в следующих случаях:
 - а) отсутствует паспорт на изделие;
 - б) изделие имеет механические повреждения;
 - в) изделие хранилось, транспортировалось, монтировалось или эксплуатировалось с нарушением требований эксплуатационной документации на изделие;
 - г) было допущено замерзание (переход в твердое фазовое состояние) контролируемой жидкости в проточной части изделия;
 - д) отсутствует или повреждена пломба с поверительным клеймом;
 - е) изделие или его составная часть подвергалось разборке или доработке:
 - ж) гарантия не распространяется на расходные материалы и детали, имеющие ограниченный срок службы.

Информация по сервисному обслуживанию представлена на сайте http: www.vzljot.ru в разделе Сервис.

ОБОЗНАЧЕНИЯ ИСПОЛНЕНИЙ

Исполнения расходомера отличаются типом присоединения к трубопроводу (конструктивом проточной части) и назначением по виду контролируемой жидкости (материалом футеровки внутренней поверхности проточной части ППР и материалом электродов):

Обозначение исполнений по типу присоединения к трубопроводу:

ЭКСПЕРТ-91×**М**× − тип присоединения − «сэндвич», типоразмеры DN10-DN150;

ЭКСПЕРТ-92×**М**× − тип присоединения − фланцевое, типоразмеры DN20-DN300.

Обозначение исполнений по типу футеровки ППР:

ЭКСПЕРТ-9×**1М**× – ППР футерован полиуретаном;

ЭКСПЕРТ-9×**2М**× – ППР футерован фторопластом.

Обозначение исполнений по назначению:

ЭКСПЕРТ-9××**МО** – общепромышленное (для неагрессивных жидкостей без абразивных примесей);

ЭКСПЕРТ-9××**МИ** – износоустойчивое исполнение (для работы с абразивными жидкостями);

ЭКСПЕРТ-9××**МА** – агрессивостойкое исполнение (для работы с агрессивными жидкостями).

Характеристики выпускаемых исполнений расходомеров:

ЭКСПЕРТ-9×2МО – общепромышленное: ППР футерован фторопластом, с защитными кольцами, электроды выполнены из нержавеющей стали;

ЭКСПЕРТ-9×**1МИ** – износоустойчивое исполнение: ППР футерован полиуретаном, без защитных колец, электроды из нержавеющей стали или титана (по заказу);

ЭКСПЕРТ-9×**2МА** – агрессивостойкое исполнение: ППР футерован фторопластом, защитные кольца – по заказу (исполнения защитных колец – на рис.А.5), электроды – из тантала или титана (по заказу).

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

1.1.1. Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» предназначен для измерения среднего объемного расхода и объема различных электропроводящих жидкостей в широком диапазоне температур и вязкостей при прямом и обратном направлении потока в различных условиях эксплуатации.

Электромагнитные расходомеры (ЭМР) «ВЗЛЕТ ЭМ» могут применяться в энергетике, в нефте-, газо- и горнодобывающей промышленности, коммунальном хозяйстве, черной и цветной металлургии, химической, нефтеперерабатывающей, целлюлознобумажной, пищевой и других отраслях промышленности. Расходомеры могут использоваться в составе различных комплексов, измерительных систем, АСУ ТП и т.п.

Расходомеры могут устанавливаться как в металлические, так и в пластиковые (металлопластиковые) трубопроводы.

- 1.1.2. Расходомеры-счетчики электромагнитные «ВЗЛЕТ ЭМ» модификации ЭКСПЕРТ в зависимости от исполнения и программно заданных функций могут обеспечивать:
 - измерение среднего объемного расхода жидкости при прямом и обратном направлении потока;
 - определение объема жидкости нарастающим итогом отдельно для прямого и обратного направления потока, а также их алгебраической суммы с учетом направления потока;
 - дозирование предварительно заданного значения объема жидкости или дозирование в режиме «старт-стоп» и определение при этом величины отмеренной дозы и времени дозирования;
 - вывод результатов измерений в виде токового, частотно-импульсного и логического сигналов;
 - сохранение в энергонезависимой памяти установочных параметров;
 - автоматический контроль и индикацию наличия нештатных ситуаций и отказов;
 - вывод измерительной, диагностической, установочной, архивной и другой информации на дисплей вторичного вычислителя, через последовательный интерфейс RS-232 или RS-485, а также через интерфейс Ethernet;
 - защиту установочных данных от несанкционированного доступа.

Расходомер также может контролировать заполнение трубопровода жидкостью.

1.2. Технические характеристики

1.2.1. Значения наибольшего $Q_{\text{наиб}}$ и наименьшего $Q_{\text{наим}}$ измеряемых средних объемных расходов для различных диаметров условного прохода (типоразмеров первичного преобразователя расхода) DN приведены в табл.1.

Таблица 1

Обозначение параметра		Значение параметра											
DN, мм	10	15	20	25	32	40	50	65	80	100	150	200	300
Q _{наиб} , м ³ /ч	3,39	7,63	13,5	21,2	34,7	54,3	84,8	143	217	339	764	1357	3056
Q _{наим.1} , м ³ /ч	0,339	0,763	1,35	2,12	3,47	5,43	8,48	14,3	21,7	33,9	76,4	135,7	305,6
Q _{наим.2} , м ³ /ч	0,042	0,095	0,169	0,265	0,434	0,679	1,06	1,79	2,71	4,24	9,55	17,0	38,2

 $Q_{\text{наим1}}$ – наименьший расход для расходомеров с погрешностью \pm 0,5 % или \pm 0,15 % (в зависимости от исполнения);

Q_{наим2} – наименьший расход для расходомеров с погрешностью ± 1,0 %.

- 1.2.2. Чувствительность расходомера по скорости потока 0,02 м/с.
- 1.2.3. Параметры контролируемой жидкости:
 - удельная проводимость не менее 5 ·10⁻⁴См/м;
 - скорость потока до 12 м/с;
 - температура от минус 10 до 150 °C при футеровке фторопластом и от минус 10 до 70 °C при футеровке полиуретаном;
 - давление в трубопроводе до 2,5 МПа.
- 1.2.4. Входы и выходы внешних связей:
 - а) блок измерения:
 - универсальные выходы 2;
 - вход управления 1 (по заказу);
 - интерфейс RS-485.
 - б) вычислитель:
 - универсальные выходы от 1 до 9 (по заказу);
 - токовый выход 1 (по заказу);
 - интерфейс RS-232;
 - интерфейс RS-485 2;
 - интерфейс Ethernet 1 (по заказу).
- 1.2.5. Расходомер обеспечивает хранение результатов работы в архивах вычислителя:
 - часовом 1560 записей;
 - суточном 366 записей;
 - месячном 48 записей;

- произвольном до 1000 записей;
- журнале ошибок до 1000 записей;
- журнале режимов до 500 записей;
- журнале пользователя до 1000 записей.

Срок сохранности установочной информации в расходомере при отключении внешнего питания не менее 1 года.

- 1.2.6. Электропитание расходомера:
 - напряжение питания стабилизированное напряжение постоянного тока значением из диапазона (22-25) В с уровнем пульсации не более ±1,0 %. Питание от сети 220 В 50 Гц может обеспечиваться с помощью источника вторичного питания, поставляемого по заказу (Приложение В);
 - потребляемая мощность не более 7,0 Вт.
- 1.2.7. Эксплуатационные параметры:
 - средняя наработка на отказ 75 000 ч;
 - средний срок службы 12 лет.
- 1.2.8. Расходомер соответствует требованиям ГОСТ Р 52931 по устойчивости:
 - к климатическим воздействиям группе В4 (диапазон температуры окружающего воздуха от 5 до 50 °C, относительная влажность не более 80 % при температуре до 35 °C, без конденсации влаги);
 - к механическим воздействиям группе N2;
 - к атмосферному давлению группе Р2.

Степень защиты расходомера и вычислителя соответствует коду IP65 по ГОСТ 14254.

1.2.9. Вид и массогабаритные характеристики составных частей расходомера приведены в Приложении А.

1.3. Метрологические характеристики

Пределы допускаемой относительной погрешности при измерении, индикации, регистрации, хранении и передаче результатов измерения среднего объемного расхода, объема различных жидкостей при любом направлении потока не превышают значений:

- \pm 0,5 % или \pm 0,15 % (в зависимости от исполнения) для расходомеров с диапазоном расходов от $Q_{\text{наим1}}$ до $Q_{\text{наим6}}$ (динамический диапазон 1:10);
- ± 1,0 % для расходомеров с диапазоном расходов от $Q_{\text{наим2}}$ до $Q_{\text{наиб}}$ (динамический диапазон 1:80).

1.4. Состав

Комплект поставки расходомера приведен в табл.2.

Таблица 2

Наименование	Кол.	Прим.
Расходомер	1	Прим. 1
Блок вычислителя	1	
Источник вторичного питания =24В	1	По заказу
Комплект монтажный	1	Прим. 2, 3
Паспорт	1	
Комплект эксплуатационной документации в составе:	1	
- руководство по эксплуатации ч. I, II		Прим. 4
- инструкция по монтажу		

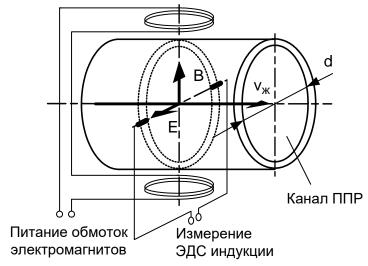
ПРИМЕЧАНИЯ.

- 1. Типоразмер расходомера и его исполнение (см. раздел Обозначение исполнений) в соответствии с заказом.
- 2. В комплект входят ответные части разъемов для кабелей питания и связи.
- 3. Для монтажа расходомера на объекте по заказу может быть поставлен набор элементов присоединительной арматуры в согласованной комплектации, либо комплект арматуры «ВЗЛЕТ КПА» в сборе.

Допустимое давление поставляемой присоединительной арматуры 1,6 МПа или 2,5 МПа – по заказу.

4. Эксплуатационная документация и карты заказа на данное изделие и другую продукцию, выпускаемую фирмой «Взлет», размещены на сайте по адресу www.vzljot.ru.

Там же размещены программы:


- «Универсальный просмотрщик», включающий в свой состав инструментальную программу «Монитор ЭКСПЕРТ-М» для работы с прибором по последовательным интерфейсам RS-232, RS-485 и интерфейсу Ethernet;
- «Программа чтения журналов действий пользователя» для просмотра журналов измерителя расходомера.

1.5. Устройство и работа

1.5.1. Принцип работы

Принцип действия электромагнитного расходомера основан на измерении электродвижущей силы (ЭДС) индукции, возникающей в объеме электропроводящей жидкости, движущейся в магнитном поле, создаваемом электромагнитной системой в сечении канала первичного преобразователя расхода (рис.1).

ППР – первичный преобразователь расхода;

В – вектор магнитной индукции;

Е – вектор электродвижущей силы (ЭДС) индукции;

 v_{x} – вектор скорости жидкости.

Рис.1. Принцип действия расходомера.

Электромагнитный первичный преобразователь расхода (ППР) представляет собой полый магнитопроницаемый цилиндр, снаружи которого размещены обмотки электромагнита. Внутренняя поверхность цилиндра имеет электроизоляционное покрытие. Для съема измерительного сигнала в стенках цилиндра диаметрально расположены два электрода, контактирующие с контролируемой жидкостью.

ЭДС индукции **E** пропорциональна средней скорости потока жидкости **v**, расстоянию между электродами **d** (внутреннему диаметру первичного преобразователя) и магнитной индукции **B**:

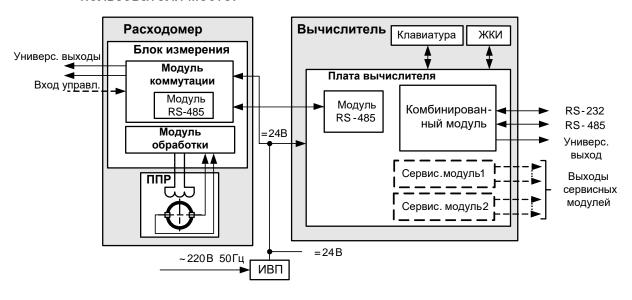
$$E = k \cdot B \cdot d \cdot v$$

где k – коэффициент пропорциональности.

Для данного типоразмера ЭМР **В** и **d** – величины постоянные. Значение ЭДС не зависит от температуры, вязкости, а также проводимости жидкости при условии, что проводимость не меньше указанной в технических характеристиках расходомера.

С учетом формулы для ЭДС индукции расход **Q** определяется следующим образом:

$$Q = \frac{\pi \cdot d^2}{4} \cdot V = \frac{\pi \cdot d}{4 \cdot k \cdot B} \cdot E.$$


Объем жидкости V, прошедшей через ППР за интервал времени T, рассчитывается по формуле:

$$V = \int_{0}^{T} Q(t)dt.$$

1.5.2. Устройство расходомера

1.5.2.1. Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» состоит из первичного преобразователя расхода и вторичного преобразователя, который в свою очередь состоит из блока измерения и вычислителя.

Расходомер-счетчик изготавливается в раздельном исполнении (рис.2), при котором в трубопровод с измеряемой жидкостью устанавливается ППР и блок измерения, а вычислитель выполнен в виде отдельного блока с индикатором и клавиатурой, который может быть размещен на удалении от расходомера в удобном для пользователя месте.

ППР – первичный преобразователь расхода;

ЖКИ – жидкокристаллический индикатор;

ИВП – источник вторичного питания.

Рис. 2. Функциональная схема расходомера.

- 1.5.2.2. Блок измерения (БИ) обеспечивает:
 - питание обмоток ППР;
 - прием и обработку измерительного сигнала (ЭДС индукции), определение среднего объемного расхода при любом направлении потока;
 - определение объема жидкости нарастающим итогом отдельно для прямого и обратного направления потока, их сумм с учетом и без учета направления потока;

- преобразование измеренного значения среднего расхода в последовательность выходных импульсных сигналов;
- определение направления потока и выдачу сигнала направления потока в виде уровня логического сигнала;
- дозирование предварительно заданного значения объема жидкости или дозирование в режиме «старт-стоп» по внешнему сигналу (через вход управления);
- связь по внутреннему интерфейсу с вычислителем. Длина кабеля связи до 1200 м;
- определение времени наработки нарастающим итогом;
- диагностику работы расходомера;
- хранение установочных данных и параметров накопления, а также защиту их от несанкционированного доступа.

1.5.2.3. Вычислитель обеспечивает:

- индикацию результатов измерения и установочных параметров, а также доступ к настроечным параметрам и их модификацию;
- вывод результатов измерения в виде токового, частотноимпульсных или логических сигналов;
- вывод измерительной, диагностической, установочной, архивной и другой информации через последовательные интерфейсы RS-232 или RS-485, а также через интерфейс Ethernet;
- сохранение в энергонезависимой памяти результатов измерений и установочных параметров;
- управление дозированием предварительно заданного значения объема жидкости или дозированием в режиме «старт-стоп»;
- автоматический контроль и индикацию наличия нештатных ситуаций и отказов, а также запись в журнал ошибок их вида и длительности:
- защиту архивных и установочных данных от несанкционированного доступа.

Настройка расходомера для измерения параметров реверсивного потока выполняется по заказу.

1.5.3. Уровни доступа

1.5.3.1. В расходомере предусмотрены три уровня доступа к установочным и калибровочным параметрам. Уровни доступа отличаются составом индицируемой на дисплее информации, возможностями по изменению установочных, калибровочных параметров ТВ и обозначаются как режимы НАСТРОЙКА, СЕРВИС и РАБОТА.

Назначение режимов:

- НАСТРОЙКА режим настройки и поверки;
- СЕРВИС режим подготовки к эксплуатации;
- РАБОТА эксплуатационный режим (режим пользователя).

Режимы расходомера задаются перемычками в виде комбинации наличия / отсутствия замыкания контактных пар J1 и J2, расположенных на плате модуля коммутации БИ (см. рис.А.4 Приложения A) и J3, J4 на субблоке вычислителя (рис.А.7). Соответствие комбинаций режимам приведено в табл.3, где «+» — наличие замыкания контактной пары перемычкой, а «-» — отсутствие замыкания.

Таблица 3

Наименование		Контактн	ная пара		
	Блок изг	иерения	Вычис	питель	Назначение режима
режима	J1	J2	J3	J4	
НАСТРОЙКА	-	+	+	-	Настройка и поверка
СЕРВИС	+	-	-	+	Подготовка к эксплуатации
РАБОТА	-	-	-	-	Эксплуатация

Наибольшими возможностями обладает режим НАСТРОЙКА. В этом режиме индицируются все параметры и возможна модификация всех установочных параметров. Наименьшими возможностями обладает режим РАБОТА.

- 1.5.3.2. Режим РАБОТА это режим эксплуатации расходомера на объекте. В режиме РАБОТА пользователь имеет возможность просматривать:
 - а) измеряемые значения параметров: объемного расхода, объемов, накопленных при прямом и обратном направлении потока, а также их сумм с учетом и без учета знака потока;
 - б) содержимое архивов и журналов;
 - в) конфигурационные параметры: типы установленных сервисных модулей внешних связей и характеристики выходов;
 - г) параметры работы:
 - показания часов реального времени;
 - параметры связи по интерфейсам RS-232 (RS-485), Ethernet. В режиме РАБОТА пользователь имеет возможность:
 - а) включать режим дозирования и управлять прибором в этом режиме:
 - задавать значение дозы;
 - инициировать процесс дозирования по сигналу с внешней кнопки.
 - б) устанавливать параметры работы по внешним интерфейсам RS-232 (RS-485), Ethernet: сетевой адрес прибора, скорость работы, длительность задержки и паузы, MAC-адрес, IP-адрес, IP-маску и IP-адрес шлюза;
 - в) выбирать единицы измерения расхода (объема) $[m^3/ч; m^3/сек; л/мин; л/сек (m^3; л)].$
- 1.5.3.3. Режим СЕРВИС это режим подготовки расходомера к эксплуатации на объекте.
 - В режиме СЕРВИС дополнительно (по отношению к режиму РАБОТА) возможно:
 - изменять параметры универсальных выходов блока измерения;
 - изменять параметры выходов сервисных модулей вычислителя;

- производить настройки отсечек по расходу, параметров фильтров и устанавливать рабочий диапазон расходомера;
- настраивать алгоритм определения пустой трубы;
- корректировать настройки связи с первичным измерителем;
- изменять показания приборных часов;
- производить очистку журналов (за исключением «Журнала режимов»).
- 1.5.3.4. В режиме НАСТРОЙКА возможно просматривать и модифицировать все параметры без исключения.

В этом режиме производится настройка прибора в процессе производства и юстировка (калибровка) при поверке.

В режиме НАСТРОЙКА производится запись в память заводских номеров расходомера и вычислителя, значения условного прохода расходомера, ввод максимальной скорости потока измеряемой жидкости, а также очистка архивов.

1.5.3.5. Модификация установочных параметров, доступных в режимах СЕРВИС и РАБОТА, не влияет на метрологические характеристики прибора и может производиться при необходимости на объекте.

Параметры настройки и калибровки расходомера в режимах СЕРВИС и РАБОТА недоступны.

1.5.4. Внешние связи

1.5.4.1. Последовательные интерфейсы

Последовательные интерфейсы RS-232, RS-485 и интерфейс Ethernet позволяют управлять прибором, считывать измерительную, архивную, установочную и диагностическую информацию, модифицировать установочные параметры. Последовательные интерфейсы поддерживают протокол ModBus (RTU ModBus и ASCII ModBus), принятый в качестве стандартного в приборах фирмы «ВЗЛЕТ».

Последовательный интерфейс RS-232 может использоваться для непосредственной связи с персональным компьютером (ПК):

- по кабелю (при длине линии связи до 15 м);
- по телефонной линии (с помощью телефонного модема);
- по радиоканалу (с помощью радиомодема).

Дальность связи по телефонной линии или радиоканалу определяется их характеристиками.

Последовательный интерфейс RS-485 обеспечивает связь по кабелю в группе из нескольких абонентов, одним из которых может быть ПК, при длине линии связи до 1200 м. При наличии в группе приборов разных производителей для взаимного согласования протоколов обмена может использоваться адаптер сетевых протоколов «ВЗЛЕТ АС» АСПВ-010.

Скорость обмена по интерфейсам RS-232 и RS-485 (от 1200 до 115200 Бод), а также параметры связи устанавливаются программно

ВНИМАНИЕ! Не допускается одновременное подключение и использование интерфейсов RS-232 и RS-485.

Интерфейс Ethernet используется для связи приборов в локальной сети, а также может использоваться для обмена данными через Интернет между приборами локальной сети и удаленным компьютером (компьютерами). Обмен осуществляется через шлюз локальной сети, имеющий собственный (глобальный) IP-адрес.

При обмене данные упаковываются в стек протоколов Ethernet / IP / UDP / TFTP / ModBus. Поддерживается также протокол ARP (Ethernet / ARP), который используется для определения MAC-адреса узла по IP-адресу запроса.

1.5.4.2. Вход управления расходомера (внешняя кнопка)

Назначение входа управления задается программно:

- **дозат.** включение дозирования заданного значения дозы по сигналу управления;
- откл вход управления отключен.

Схемы цепей входа управления, а также параметры управляющего сигнала приведены в Приложении Б.

1.5.4.3. Блок измерения и вычислитель имеют гальванически развязанные выходы, универсальные как по возможному режиму работы (частотный, импульсный или логический), так и возможному назначению. Тип (режим работы) выходов, назначение, а также параметры их работы задаются программно при выпуске из производства в соответствии с заказом либо на объекте при вводе в эксплуатацию.

Схема оконечного каскада выходов и описание его режимов работы приведены в Приложении Б.

1.5.4.4. Универсальные выходы блока измерения

Блок измерения имеет два гальванически развязанных универсальных выхода №1 и №2. Назначение, а также параметры их работы задаются программно при выпуске из производства в соответствии с заказом, либо на объекте при вводе в эксплуатацию в соответствии с табл.4.

В импульсном и частотном режимах выходы могут использоваться для вывода результатов измерения в виде импульсной последовательности типа «меандр» со скважностью 2 и нормированным весом импульсов. Предельная частота следования импульсов 500 Гц.

Константа преобразования выхода **КР** (имп/л), определяющая вес импульса, может устанавливаться в пределах от 0,0001 до 200 000 с минимальной дискретностью 0,0001.

Для определения значения **КР** с учетом максимального значения расхода в трубопроводе, где будет устанавливаться расходомер, а также частотных свойств приемника импульсного сигнала можно воспользоваться формулой:

$$K_p$$
 (имп/л) $\leq \frac{3.6 \cdot F}{Q_{\text{макс}}} = \frac{1.8 \cdot 10^3}{Q_{\text{макс}} \cdot \tau_u}$

где $Q_{\text{макс}}$ – максимальный эксплуатационный расход в трубопроводе, $M^3/4$;

F – максимально допустимая для приемника частота следования импульсов расходомера, Гц;

 $au_u = rac{T_u}{2} - ext{минимально}$ допустимая для приемника длительность импульсов расходомера, мс;

Т_и – период следования импульсов на выходе расходомера, мс.

Таблица 4. Назначения универсальных выходов блока измерения

Режим рабо-	Обозначение	Условие формирования сигнала /
ты выхода	на дисплее	изменения состояния на выходе
	Q-	Расход при обратном (отрицательном) направлении потока
Частотный	Q+	Расход при прямом (положительном) направлении потока
	Q	Расход при любом направлении потока
	Дозатор	Импульсный сигнал по окончанию дозирования
Импунганий	V–	Объем при обратном направлении потока
Импульсный	V+	Объем при прямом направлении потока
	v	Объем при любом направлении потока
	Напр. пот.	Изменение направления потока жидкости в трубопроводе
	Превыш. расх.	Превышение значения Q _{наиб}
	Любая ошибка	Любая ошибка, диагностируемая расходомером
	Дозатор	Старт / останов дозирования
	Напр. пот. ин.	Изменение направления потока жидкости в трубопроводе при теплоучете
	Питание	Отсутствие сетевого питания
Логический	Пустая труба	Уровень зондирующего сигнала, подаваемого на электроды, выше установленного порогового значения для незаполненной трубы
	Вне диапаз.	Значение расхода вне заданного диапазона
	Выше диапаз.	Текущее значение расхода больше значения верхней границы заданного рабочего диапазона
	Ниже диапаз.	Текущее значение расхода меньше значения нижней границы заданного рабочего диапазона

По умолчанию при выпуске из производства для выхода №1 устанавливается частотный режим работы и значение **КР**, указанное в табл.5, что соответствует частоте около 500 Гц при Q_{наиб}.

Таблица 5

DN, MM	10	15	20	25	32	40	50	65	80	100	150	200	300
КР, имп/л	530	230	130	80	50	30	20	10	8	5	2	1	0,5

◆ В частотном режиме частота следования пропорциональна среднему объемному расходу, измеренному в течение предыдущих 80 мс.

При работе в частотном режиме задается значение **КР**, а также значения параметров максимальная частота (**Fмакс**) и аварийная частота (**Fавар**).

Fмакс – частота на выходе при максимальном расходе в данном трубопроводе. Превышение на выходе значения **Fмакс** диагностируется в расходомере как нештатная ситуация, т.е. заданное для данного выхода значение **КР** некорректно.

Faвap — частота следования импульсной последовательности (не более 700 Гц), которая будет формироваться на выходе в случае, если измеренное значение расхода превышает значение Q_{наиб} для данного DN расходомера. Заданное значение **Faвap** должно быть не меньше заданного значения **Fmaкc** для данного выхода. Для отключения функции формирования на выходе аварийной частоты необходимо задать значение **Faвap**, равное 0.

При установке | **Q** | (расход по модулю) импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе при любом направлении потока, при установке **Q+** — только при прямом направлении потока, **Q-** — только при обратном направлении.

• В импульсном режиме работы в течение секунды на выход поступает пачка импульсов, количество которых с учетом веса импульса соответствует объему, измеренному за предыдущую секунду.

При работе в импульсном режиме задается значение **КР** и период импульсов **Тимп**.

Период импульсов **Тимп** — период следования импульсов в пачке; может быть задано значение от 2 до 1000 мс (что соответствует частоте от 500 до 1 Γ ц).

При установке | V | (объем по модулю) импульсы, количество которых пропорционально измеренному значению объема, поступают на выход при любом направлении потока, при установке V+ — только при прямом направлении потока и V- — только при обратном направлении.

При установке **Дозатор** в момент окончания дозирования на выход выдается один импульс.

- ◆ В логическом режиме на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) другой уровень сигнала.
- **Напр. пот.** уровень сигнала на выходе изменяется без задержки при изменении направления потока в трубопроводе;

- Превыш. расх. уровень сигнала на выходе изменится, если измеренное значение расхода превысит значение Q_{наиб} для данного DN расходомера;
- Любая ошибка уровень сигнала на выходе изменится при возникновении любой нештатной ситуации, диагностируемой прибором;
- **Дозатор** уровень сигнала на выходе изменится в момент окончания дозирования;
- Напр. пот. ин. изменение уровня сигнала на выходе произойдет только, если длительность времени изменения направления потока будет больше заданного времени инерции; значение параметра Вр. инерц. перек. в меню Логический выход может быть задано в диапазоне от 2 до 60 мин;
- Питание при наличии напряжения питания на выходе формируется высокий уровень сигнала, при пропадании питания напряжение на выходе отсутствует;
- Пустая труба уровень сигнала на выходе изменится, если значение сопротивления выше установленного порогового значения для заполненной трубы;
- **Вне диапазона** уровень сигнала на выходе изменяется, если значение расхода вне заданного диапазона;
- **Выше диапаз.** уровень сигнала на выходе изменится, если измеренное значение расхода станет больше значение Q_{макс};
- **Ниже диапаз.** уровень сигнала на выходе изменится, если измеренное значение расхода станет меньше значение Q_{мин}.

Программно для всех режимов задается **Акт. ур.** (активный уровень), т.е. уровень сигнала (**Высокий** или **Низкий**), соответствующий наличию события. Электрические параметры уровней сигнала приведены в Приложении Б.

1.5.4.5. Универсальные выходы вычислителя

Вычислитель в зависимости от количества установленных сервисных модулей универсальных выходов (см. п.1.5.6.3) может иметь от 1 до 9 гальванически развязанных универсальных выходов. Режимы работы, назначения универсальных выходов, а также параметры выходных сигналов задаются программно. Схема оконечного каскада выходов и описание его режимов работы приведено в Приложении Б.

Возможные назначения выходов в различных режимах приведены в табл.6.

Таблица 6. Назначения универсальных выходов вычислителя

Режим работы	Обозначение	Условие формирования сигнала /
выхода	на дисплее	изменения состояния на выходе
	Q	Расход при любом направлении потока
Частотный	Q-	Расход при обратном (отрицательном) направлении пото- ка
	Q+	Расход при прямом (положительном) направлении потока
	Нет	Выход закрыт
	v	Объем при любом направлении потока
Market out in	V–	Объем при обратном направлении потока
Импульсный	V+	Объем при прямом направлении потока
	Нет	Выход закрыт
	Q>Qmax	Текущее значение расхода больше максимального расхода для данного DN расходомера
	Q <qmin< td=""><td>Текущее значение расхода меньше минимального расхода для данного DN расходомера</td></qmin<>	Текущее значение расхода меньше минимального расхода для данного DN расходомера
	Q вне диапаз.	Значение расхода вне заданного диапазона
Логический	Пустая труба	Уровень зондирующего сигнала, подаваемого на электроды расходомера, выше установленного порогового значения для незаполненной трубы
-	Питание	Отсутствие сетевого питания
	Реле дозатор	Окончание дозирования
	Ошибка	Любая ошибка, диагностируемая вычислителем
	Q>Qнаиб	Текущее значение расхода больше значения верхней границы заданного рабочего диапазона
	Направление	Изменение направления потока на обратное
	Нет	Выход закрыт

- ◆ В частотном режиме работы на открытый выход выдается импульсная последовательность типа «меандр» со скважностью 2, частота следования которой пропорциональна текущему значению расхода. Возможно масштабирование работы частотного выхода путем программной установки в соответствующем меню нижнего и верхнего пороговых значений расхода **Qнп** и **Qвп**, соответствующих значениям частоты 0 и 3000 Гц на выходе.
- ◆ В импульсном режиме работы количество импульсов в пачке (типа «меандр» со скважностью 2), поступающих на открытый выход каждую секунду, соответствует значению объема, измеренному за предыдущую секунду. Максимальная частота следования 500 Гц.
- ◆ Для правильной работы универсальных выходов в частотном или импульсном режиме в расходомере предусмотрена процедура автоматического расчета коэффициента КР (имп/м³).

Расчет **КР** при работе в частотном режиме производится по заданным пользователем значениям **Qвп** и **Qнп** и максимальному значению частоты **Fмакс**, расчет **КР** при работе в импульсном режиме — по заданным **Qвп** и длительности выходного импульса τ в диапазоне от 1 до 500 мс.

Если расчетное значение **КР** по каким-либо соображениям не устраивает пользователя, то он может установить другое меньшее (большее) значение. При этом значения **Qвп**, **Qнп** и **Fмакс** (**Qвп** и **т**) не меняются.

При неправильно с учетом частоты (длительности импульса) установленном значении **КР** появится сообщение о нештатной ситуации.

В частотном режиме сообщение о нештатной ситуации появится также при частоте следования импульсов больше заданной пользователем.

◆В логическом режиме на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) – другой уровень сигнала.

Программно для всех режимов задается **Актив. ур.** (активный уровень), т.е. уровень сигнала (**Высокий** или **Низкий**), соответствующий наличию события. Электрические параметры уровней сигнала приведены в Приложении Б.

1.5.4.6. Токовый выход вычислителя

Токовый выход может быть реализован с помощью сервисного модуля токового выхода, устанавливаемого по заказу. Назначение и параметры работы токового выхода на базе сервисного модуля устанавливаются программно.

Гальванически развязанный токовый выход вычислителя может работать в одном из трех диапазонов: (0-5) мА, (0-20) мА или (4-20) мА.

Номинальная статическая характеристика токового выхода

$$Q = Q_{H\Pi} + (Q_{B\Pi} - Q_{H\Pi}) \frac{I_{BMX} - I_{MMH}}{I_{MAYC} - I_{MMH}},$$

где Q – измеренное значение расхода, $м^3/ч$;

 $Q_{\mbox{\scriptsize H\Pi}}$ — заданное значение нижнего порога по токовому выходу, соответствующее $I_{\mbox{\tiny MИH}}, \, m^3/4;$

 $Q_{\text{ву}}$ – заданное значение верхнего порога по токовому выходу, соответствующее $I_{\text{макс}}$, $M^3/4$;

I_{вых} – значение выходного токового сигнала, соответствующее измеренному значению расхода, мА;

 $I_{\text{макс}}$ — максимальное значение диапазона работы токового выхода (5 или 20 мА);

 $I_{\text{мин}}$ — минимальное значение диапазона работы токового выхода (0 или 4 мA).

Программно для токового выхода задаются диапазон работы и значения уставок, а также назначение. При установке назначения | Q | — ток, пропорциональный измеренному значению расхода, подается на выход при любом направлении потока, при установке Q+ — только при прямом направлении потока, при установке Q- при обратном направлении.

Токовый выход в диапазонах работы (0-20) мА или (4-20) мА может работать на нагрузку сопротивлением до 1 кОм, в диапазоне (0-5) мА – до 2,5 кОм.

Допустимая длина кабеля связи по токовому выходу определяется сопротивлением линии связи. При этом сумма входного сопротивления приемника токового сигнала и сопротивления линии связи не должна превышать указанного сопротивления нагрузки.

1.5.5. Регистрация результатов работы

1.5.5.1. Для хранения установочных данных в измерителе расходомера предусмотрены журнал сервисных данных и журнал настроечных данных.

В журнале сервисных данных фиксируются значения параметров, доступные для редактирования в режиме СЕРВИС. Журнал имеет глубину до 1000 записей. После исчерпания глубины журнала сохранение новой записи происходит поверх первой (по времени сохранения) записи.

В журнале настроечных данных фиксируются значения параметров, доступные для редактирования в режиме НАСТРОЙКА. Журнал имеет глубину до 8000 записей. После исчерпания глубины журнала блокируется возможность сохранения данных. Снятие блокировки выполняется на заводе-изготовителе.

Доступ к журналам измерителя производится по интерфейсу с помощью специальной программы «Программа чтения журналов действий пользователя».

1.5.5.2. Результаты измерений и вычислений записываются во внутренние архивы вычислителя: часовой, суточный, месячный, а также могут записываться в произвольный архив.

Часовой, суточный, месячный и произвольный архивы имеют одинаковую структуру. Глубина архивов составляет:

- часового 1560 записей;
- суточного 366 записей;
- месячного 48 записей;
- произвольного до 1000 записей.

В перечень архивируемых параметров входят:

- **V**+ − объем за интервал архивирования, измеренный при прямом направлении потока, м³;
- **V-** объем за интервал архивирования, измеренный при обратном направлении потока, m^3 ;

- Qcp среднее значение расхода за интервал архивирования, л/мин;
- **Тсс** время отсутствия связи с прибором;
- **Тнер** время простоя.

Также в каждой записи фиксируется 16-разрядный цифровой код нештатных ситуаций и отказов в работе расходомера и вычислителя, возникших в течение интервала архивирования. Во всех архивах в отдельном столбце символом «1» фиксируется факт пропадания питания прибора в течение интервала архивирования.

Индикация значений архивируемых параметров сопровождается датой и временем сохранения архивной записи.

Для каждого архива предусмотрена процедура поиска требуемой архивной записи.

1.5.5.3. Нештатные ситуации, ошибки и отказы, возникающие в процессе работы расходомера, фиксируются в журнале ошибок. Журнал может содержать до 1000 записей.

В журнале ошибок фиксируются:

- номер записи;
- наименование нештатной ситуации (ошибки, отказа);
- дата и время установления и снятия нештатной ситуации (ошибки, отказа).
- 1.5.5.4. Факт модификации значений установочных параметров фиксируется в журнале пользователя, который может содержать до 1000 записей.

В журнале фиксируется:

- номер записи;
- дата и время произведенной модификации;
- наименование модифицируемого параметра;
- значение параметра до модификации;
- значение параметра после модификации.
- 1.5.5.5. Изменение режима прибора фиксируется в журнале режимов, который может содержать до 500 записей.

В журнале фиксируется:

- номер записи;
- наименование текущего режима;
- дата и время установления режима.

1.5.6. Конструкция

- 1.5.6.1. Проточная часть расходомера, в зависимости от вида присоединения к трубопроводу, выполняется в разных конструктивах:
 - под присоединение типа «сэндвич» (DN10-DN150), когда ППР с помощью шпилек зажимается между двумя фланцами, приваренными к концам трубопровода в месте врезки расходомера (рис.А.1);

- фланцованной (DN20-DN300), когда фланцы ППР крепятся болтами к ответным фланцам трубопровода (рис.А.2, А.3).

Внутренняя поверхность проточной части в зависимости от назначения расходомера футеруется фторопластом или полиуретаном.

На торцевые поверхности ППР с футеровкой фторопластом для предохранения ее в процессе монтажа и эксплуатации устанавливаются защитные кольца. Диаметры защитных колец при использовании фланцев по ГОСТ 33259 исполнения F обеспечивают соосность внутреннего канала ППР и ответных фланцев.

Кроме того, наличие у защитных колец фланцованных ППР заземляющего лепестка обеспечивает электрический контакт расходомеров с измеряемой жидкостью при их монтаже в пластиковые (металлопластиковые) трубопроводы.

1.5.6.2. Блок измерения расходомера содержит платы модулей обработки и коммутации. Модули размещаются непосредственно в корпусе БИ и соединяются между собой через разъем. Корпус БИ выполняется из металла. Крышка соединяется с корпусом при помощи нижней поворотной петли и скрепляется с ним винтами.

Кожух ППР и полая стойка, на которой крепится БИ, выполнены из металла. Возможен разворот БИ вокруг оси стойки на 90°, 180° или 270° по заказу при выпуске из производства.

Ввод кабеля питания и сигнальных кабелей осуществляется через два металлических кабельных ввода с установочной резьбой M16×1.5.

Клеммой защитного заземления расходомера служит винт на основании БИ, к которому крепятся электрические проводники для соединения с ответными фланцами трубопровода.

1.5.6.3. Блок вычислителя расходомера состоит из трех литых из алюминиевого сплава частей (модулей): лицевой части – блока вторичного преобразователя (ВП) и клавиатуры, средней части – блока встроенного источника питания (ВИП) и основания – блока коммутации (рис.А.6).

Блок ВП и клавиатуры содержит модуль вторичного преобразователя. На передней панели корпуса блока находятся жидкокристаллический индикатор и клавиатура. ЖКИ обеспечивает вывод четырех строк алфавитно-цифровой информации при 20 символах в строке.

На модуле вторичного преобразователя дополнительно установлены:

- а) модуль внутреннего интерфейса RS-485 для связи с расходоме-
- б) комбинированный модуль, содержащий:
 - последовательный интерфейс RS-232;
 - последовательный интерфейс RS-485;

- универсальный выход 0;
- контактные пары J3 и J4 для задания режима комплекса;
- контактные пары J1 и J2 для задания режима работы оконечного каскада универсального выхода 0;
- разъемы для подключения кабелей связи с внешними устройствами.
- 1.5.6.4. Для установки по заказу одного или двух сервисных модулей внешних связей на плате вычислителя имеются два слота (разъема): №1 и №2.

Дополнительные модули имеют коммутационные элементы: разъемы для подключения кабелей связи с внешними устройствами, а также контактные пары для установки режима работы оконечных каскадов универсальных выходов.

1.5.6.5. Возможные комбинации установки сервисных модулей внешних связей и нумерация выходов в зависимости от разъема (слота) установки модулей приведены в табл.7. Значком «х» обозначены установленные модули (комбинированный модуль установлен всегда).

Таблица 7

Наименование модуля	№ слота	№ выхода	Возможные комб да модулей				ации	1	
Комбинированный модуль	_	0	×	×	×	×	×	×	×
Модуль	1	14	×	×	_	×	_	_	_
универсальных выходов	2	58	_	×	×	_	_	_	_
Модуль токового выхода	1	1	-	_	×	_	×	×	_
Модуль Ethernet	2	2	_	_	_	×	×	_	×

1.5.6.6. Блок ВИП совместно с блоком ВП и клавиатуры, соединяемые электрически многожильным шлейфом и конструктивно винтами со стороны блока ВИП, составляют субблок вычислителя (см. рис.А.7).

Доступ к коммутационным элементам сервисных модулей для подключения кабелей связи осуществляется с обратной стороны субблока вычислителя. Обозначения коммутационных элементов на субблоке вычислителя приведены на рис.А.9.

В свою очередь субблок вычислителя соединяется винтами со стороны лицевой панели с блоком коммутации, образуя собственно вычислитель. На задней стенке блока коммутации установлены кронштейны под DIN-рейку, обеспечивающие крепление вычислителя на объекте эксплуатации (рис.А.6).

На нижней плоскости корпуса блока коммутации расположены гермовводы под металлорукава для ввода кабеля питания и кабелей связи, подключаемых к вычислителю.

Заземляющий проводник подключается к клемме заземления, расположенной на торце блока ВИП.

1.6. Маркировка и пломбирование

- 1.6.1. На передней панели блока измерения расходомера указываются (рис.3):
 - наименование и обозначение прибора;
 - товарный знак и логотип фирмы-изготовителя;
 - знак утверждения типа средства измерения;
 - вид исполнения;
 - типоразмер ЭМР;
 - напряжение питания расходомера;
 - максимальное давление в трубопроводе;
 - максимальная температура измеряемой жидкости;
 - степень защиты расходомера.

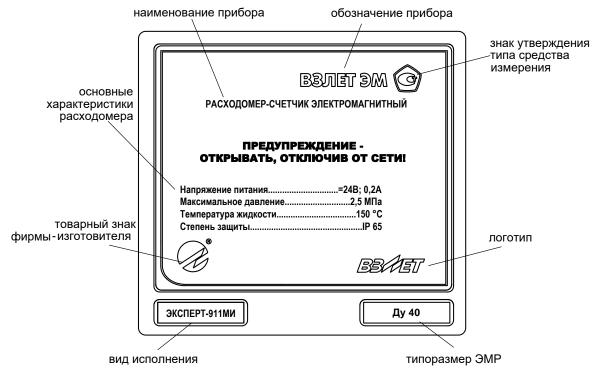


Рис.3. Вид маркировки блока измерения расходомера.

На торце корпуса БИ маркирован гермоввод кабеля питания =24 B.

- 1.6.2. На передней панели вычислителя расходомера указываются (рис.4):
 - наименование и обозначение прибора;
 - товарный знак и логотип фирмы-изготовителя;
 - знак утверждения типа средства измерения;
 - вид исполнения;
 - напряжение питания вычислителя;
 - заводской номер расходомера.

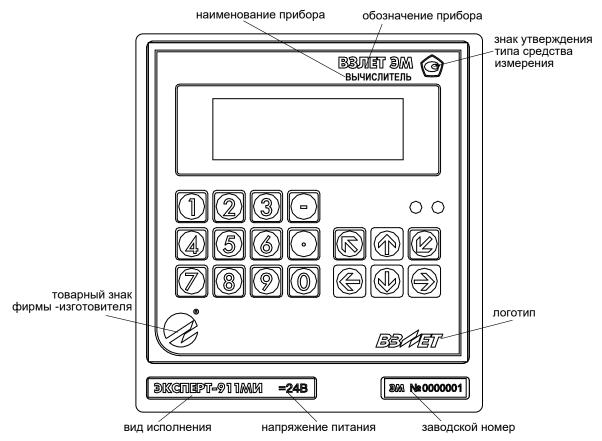


Рис.4. Вид маркировки вычислителя расходомера.

- 1.6.3. После поверки расходомера пломбируются:
 - контактные пары разрешения модификации калибровочных параметров на плате модуля коммутации БИ и на субблоке вычислителя;
 - один из винтов, скрепляющий субблок вычислителя.
- 1.6.4. После монтажа и проверки функционирования расходомера на объекте должны быть опломбированы контактные пары разрешения модификации функциональных параметров на плате модуля коммутации БИ и на субблоке вычислителя.

Кроме того, для защиты от несанкционированного доступа при эксплуатации могут быть опломбированы корпуса блока измерения и вычислителя расходомера.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения

- 2.1.1. Эксплуатация расходомера должна производиться в условиях внешних воздействующих факторов, не превышающих допустимых значений, оговоренных в п.1.2.8.
- 2.1.2. Расходомер может устанавливаться в вертикальном, горизонтальном или наклонном трубопроводе. Наличие грязевиков или специальных фильтров не обязательно.
- 2.1.3. Точная и надежная работа расходомера обеспечивается при выполнении в месте установки ППР следующих условий:
 - отсутствует скопление воздуха;
 - давление жидкости исключает газообразование в трубопроводе;
 - на входе и выходе ППР имеются прямолинейные участки трубопровода соответствующей длины с DN, равным DN ППР. На этих участках не должно быть никаких устройств или элементов, вызывающих изменение структуры потока жидкости;
 - весь внутренний объем канала ППР в процессе работы расходомера заполнен жидкостью;
 - напряженность внешнего магнитного поля промышленной частоты не превышает 400 А/м.

ВНИМАНИЕ! Запрещается на всех этапах работы с ЭМР касаться руками электродов, находящихся во внутреннем канале ППР.

Рекомендации по выбору места установки и правила монтажа (демонтажа) расходомера, описание набора элементов арматуры, а также комплекта присоединительной арматуры «ВЗЛЕТ КПА» изложены в документе «Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ». Исполнения ЭКСПЕРТ-9ххМх. Инструкция по монтажу». ШКСД.407112.000 ИМ.

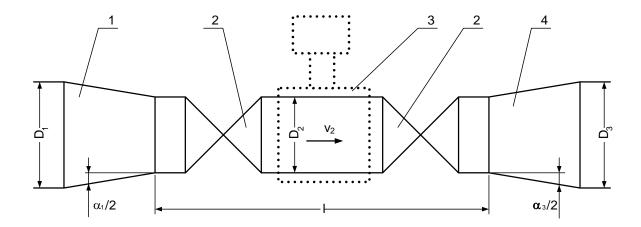
ВНИМАНИЕ! Не допускается с ППР, футерованного фторопластом и без защитных колец, снимать стяжную шпильку (болт) и прижимные пластины на время более 10 мин.

2.1.4. Тип и состав контролируемой жидкости (наличие и концентрация взвесей, посторонних жидкостей и т.п.), режим работы и состояние трубопровода не должны приводить к появлению отложений, влияющих на работоспособность и метрологические характеристики расходомера.

Для обеспечения работоспособности расходомера в системах, использующих по каким-либо причинам угольные фильтры, необходимо следить за их исправностью.

- 2.1.5. Необходимость защитного заземления прибора определяется в соответствии с требованиями главы 1.7 «Правил устройства электроустановок» в зависимости от напряжения питания и условий размещения прибора.
- 2.1.6. Молниезащита объекта размещения прибора, выполненная в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО153-34.21.122-2003 (утвержденной Приказом Минэнерго России №280 от 30.06.2003), предохраняет прибор от выхода из строя при наличии молниевых разрядов.
- 2.1.7. Требования к условиям эксплуатации и выбору места монтажа, приведенные в настоящей эксплуатационной документации, учитывают наиболее типичные внешние факторы, влияющие на работу расходомера.

На объекте эксплуатации могут существовать или возникнуть в процессе его эксплуатации внешние факторы, не поддающиеся предварительному прогнозу, оценке или проверке и которые производитель не мог учесть при разработке.


В случае проявления подобных факторов следует устранить их или найти иное место эксплуатации, где данные факторы отсутствуют или не оказывают влияния на работу изделия.

2.2. Выбор типоразмера расходомера

- 2.2.1. Выбор типоразмера расходомера определяется диапазоном расходов в трубопроводе, где будет устанавливаться ППР. Если диапазон расходов для данного трубопровода укладывается в диапазон расходов нескольких типоразмеров ЭМР, то определять нужный типоразмер рекомендуется исходя из заданного предельного значения потерь напора.
- 2.2.2. Если значение DN выбранного типоразмера ЭМР меньше значения DN трубопровода, куда предполагается устанавливать ППР, то для монтажа в трубопровод используются переходные конуса (конфузор и диффузор).
- 2.2.3. Определить гидравлические потери напора в системе <конфузор ППР диффузор>, приведенной на рис.5, можно по нижеприведенной методике.
- 2.2.3.1. Исходные данные для определения потерь напора:

- объемный расход жидкости в данном трубопроводе	- Q	[м³/ч];
- DN подводящего трубопровода	- D1	[MM];
- DN ΠΠΡ	- D2	[MM];
- DN отводящего трубопровода	- D3	[MM];
- угол конусности конфузора	- α ₁	[град];
- угол конусности диффузора	- α ₃	[град];
- длина прямолинейного участка	<i>- 1</i>	[MM].

1 – конфузор;

2 – полнопроходная шаровая задвижка;

 $3 - \Pi\Pi P$:

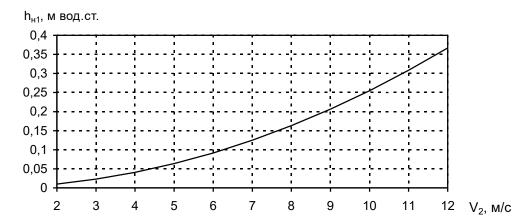
4 – диффузор.

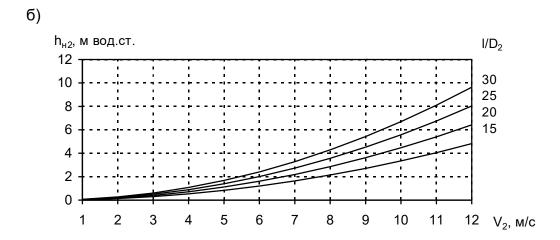
Рис.5. Схема трубопровода в месте установки ППР.

2.2.3.2. Согласно известному принципу суперпозиции суммарные потери напора \mathbf{h}_{H} в системе <конфузор – ППР – диффузор> складываются из местных потерь напора в конфузоре $\mathbf{h}_{\mathsf{H}1}$, прямолинейном участке (длиной l) $\mathbf{h}_{\mathsf{H}2}$ и диффузоре $\mathbf{h}_{\mathsf{H}3}$.

Потери напора в конфузоре определяются по графику рис.6а, где $\mathbf{v_2}$ – скорость потока жидкости в прямолинейном участке. График зависимости потерь напора от скорости потока рассчитан для угла конусности конфузора α_1 = 20 °. Для определения скорости потока жидкости по значению объемного расхода \mathbf{Q} можно воспользоваться графиком рис.7 или формулой:

$$v(M/c) = \frac{Q(M^3/4)}{0.9 \cdot \pi \cdot Dy^2(MM)} \cdot 10^3$$
.


Потери напора в прямолинейном участке определяются по графику рис.6б. График зависимости потерь напора от скорости потока рассчитан для отношений длины прямолинейного участка к диаметру 15; 20; 25 и 30.


Потери напора в диффузоре определяются по графику рис.6в. График зависимости потерь напора от скорости потока рассчитан для угла конусности диффузора $\alpha_3 = 20^\circ$ и отношений наибольшего диаметра диффузора к наименьшему 2,0; 2,5; 3,5 и 4,0.

ПРИМЕЧАНИЕ. Программное обеспечение для проведения уточненного расчета потерь напора в системе <конфузор – ППР – диффузор> поставляется по заказу.

a)

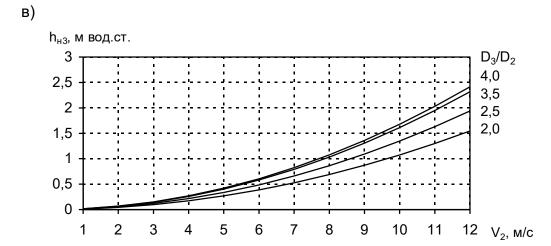


Рис.6. Графики зависимостей потерь напора в конфузоре (а), прямолинейном участке (б) и диффузоре (в).

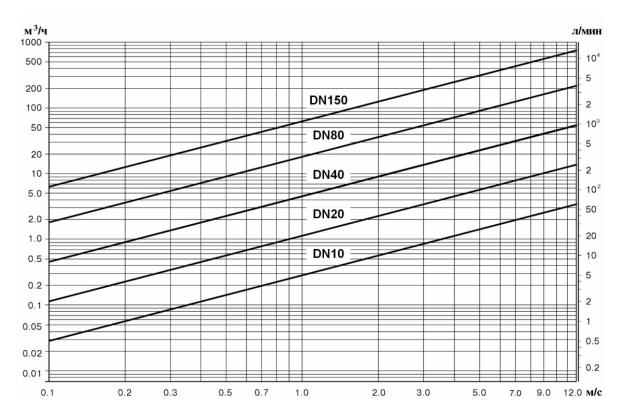


Рис.7. График зависимости расхода жидкости от скорости потока для различных значений DN.

2.3. Подготовка к работе

- 2.3.1. Меры безопасности
- 2.3.1.1. К работе с расходомером допускается персонал, изучивший эксплуатационную документацию на изделие.
- 2.3.1.2. При подготовке изделия к использованию и в процессе эксплуатации должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».
- 2.3.1.3. При проведении работ с расходомером опасными факторами для человека являются:
 - напряжение переменного тока (с действующим значением до 264 В частотой 50 Гц);
 - давление в трубопроводе (до 2,5 МПа);
 - температура рабочей жидкости (до 150 °C);
 - другие факторы, связанные с профилем и спецификой объекта, где производится монтаж.
- 2.3.1.4. Запрещается использовать расходомеры при давлении в трубопроводе более 2,5 МПа.
- 2.3.1.5. В процессе работ по монтажу, пусконаладке или ремонту расходомера запрещается:
 - производить подключения к расходомеру, переключения режимов или замену электрорадиоэлементов при включенном питании;
 - демонтаж расходомера из трубопровода до полного снятия давления на участке трубопровода, где производятся работы;
 - использовать электроприборы и электроинструменты без подключения их корпусов к магистрали защитного заземления, а также использовать перечисленные устройства в неисправном состоянии.
 - 2.3.2. При вводе в эксплуатацию ЭМР должно быть проверено:
 - соответствие направления стрелки на корпусе расходомера направлению потока жидкости в трубопроводе;
 - соответствие длин прямолинейных участков на входе и выходе ЭМР;
 - правильность подключения расходомера и взаимодействующего оборудования в соответствии с выбранной схемой;
 - правильность заданных режимов работы выходов расходомера;
 - соответствие напряжения питания заданным техническим характеристикам.

- 2.3.3. Расходомер при первом включении или после длительного перерыва в работе готов к эксплуатации после:
 - полного прекращения динамических гидравлических процессов в трубопроводе, связанных с изменением скорости и расхода жидкости (при опорожнении или заполнении трубопровода, регулировке расхода и т.п.);
 - 30-минутной промывки ППР потоком жидкости;
 - 30-минутного прогрева расходомера.
- 2.3.4. Перед вводом в эксплуатацию необходимо опломбировать расходомер и задвижки байпаса (при его наличии).

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1. Проверка технического состояния

- 3.1.1. Введенный в эксплуатацию расходомер рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности расходомера;
 - соблюдения условий эксплуатации;
 - наличия напряжения питания;
 - отсутствия внешних повреждений составных частей расходомера;
 - надежности электрических и механических соединений.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в две недели.

Несоблюдение условий эксплуатации расходомера в соответствии с разделом 1.2.8 может привести к его отказу или превышению допустимого уровня погрешности измерений.

Внешние повреждения также могут привести к превышению допустимого уровня погрешности измерений. При появлении внешних повреждений изделия или кабеля питания, связи необходимо обратиться в сервисный центр или региональное представительство для определения возможности его дальнейшей эксплуатации.

3.1.2. В процессе эксплуатации расходомера не реже одного раза в год необходимо проводить профилактический осмотр внутреннего канала ППР на наличие загрязнений и/или отложений. Допускается наличие легкого налета, который должен сниматься с помощью чистой мягкой ветоши, смоченной в воде.

При наличии загрязнений и/или отложений другого вида либо их существенной толщины необходимо произвести очистку поверхности ППР и отправить расходомер на внеочередную поверку.

Очистку отложений в этом случае рекомендуется проводить сразу же после извлечения расходомера из трубопровода с помощью воды, чистой ветоши и неабразивных моющих средств.

Запрещается при очистке отложений промывать ППР под струей жидкости либо погружать ППР в жидкость, даже частично!

3.1.3. При отправке расходомера на поверку или в ремонт необходимо после демонтажа очистить внутренний канал ППР от отложений, образовавшихся в процессе эксплуатации, а также от остатков рабочей жидкости. Остатки агрессивной жидкости должны быть нейтрализованы.

При монтаже и демонтаже расходомера необходимо руководствоваться инструкцией по монтажу расходомера.

Отправка расходомера для проведения поверки либо ремонта должна производиться с паспортом расходомера. В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

3.2. Поверка

Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭМ» проходит первичную поверку при выпуске из производства и после ремонта, периодические – в процессе эксплуатации.

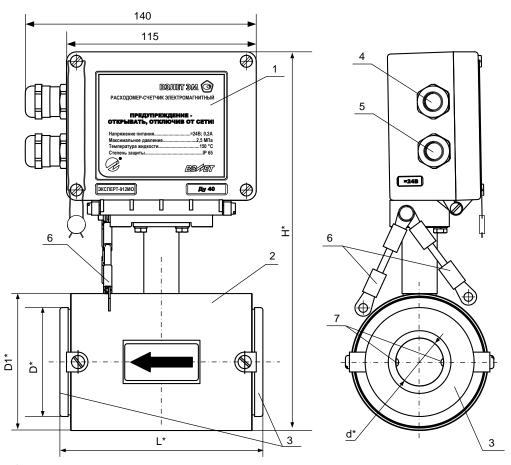
Межповерочный интервал – 4 года.

Поверка расходомера производится в соответствии с разделом 5 «Методика поверки» части II настоящего руководства по эксплуатации.

4. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

4.1. Расходомер «ВЗЛЕТ ЭМ», укомплектованный в соответствии с заявкой, упаковывается в индивидуальную тару категории КУ-2 по ГОСТ 23170 (коробку из гофрированного картона либо деревянный ящик). Туда же помещается эксплуатационная документация.

Присоединительная арматура поставляется в отдельной таре россыпью или в сборе на один или несколько комплектов.


4.2. Хранение расходомера должно осуществляться в упаковке изготовителя в сухом отапливаемом помещении в соответствии с требованиями группы 1 по ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Расходомер не требует специального технического обслуживания при хранении.

- 4.3. Расходомеры могут транспортироваться автомобильным, речным, железнодорожным и авиационным транспортом (кроме негерметизированных отсеков) при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 25 до 55 °C;
 - влажность не превышает 95 % при температуре до 35 °C;
 - вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм или ускорением до 49 m/c^2 ;
 - удары со значением пикового ускорения до 98 м/c²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

ПРИЛОЖЕНИЕ А. Вид составных частей расходомера

^{* -} справочный размер

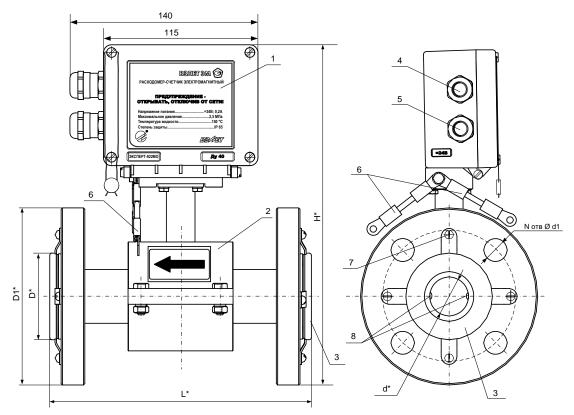

1 — блок измерения; 2 — первичный преобразователь расхода; 3 — защитные кольца; 4 — гермоввод кабеля связи; 5 — гермоввод кабеля питания; 6 — электрические проводники для соединения корпуса ЭМР с трубопроводом; 7 — электроды.

Рис.А.1. Вид расходомера общепромышленного исполнения ЭКСПЕРТ-912MO с защитными кольцами.

Таблица А.1. Массогабаритные характеристики расходомеров исполнений ЭКСПЕРТ-912МО, -911МИ, -912МА типоразмеров DN10...DN150

	d*, мм	D*, мм	D1*, мм	L*,		Macca,	
DN, мм				с защитными кольцами	без защитных колец, футеровка полиуретаном	Н*, мм	не более, кг
10	9,5	34	60	93	85	206	1,19
15	14	39	60	93	85	206	1,19
20	19	50	73	114	106	220	1,74
25	24	57	73	114	106	220	1,79
32	29	65	83	124	116	230	2,19
40	39	75	89	134	126	235	2,54
50	48	87	102	154	147	250	3,39
65	61	109	121	175	167	267	4,64
80	74	120	140	175	167	286	5,79
100	90	149	159	216	208	305	9,49
150	139	202	219	236	228	365	15,69

* - справочный размер

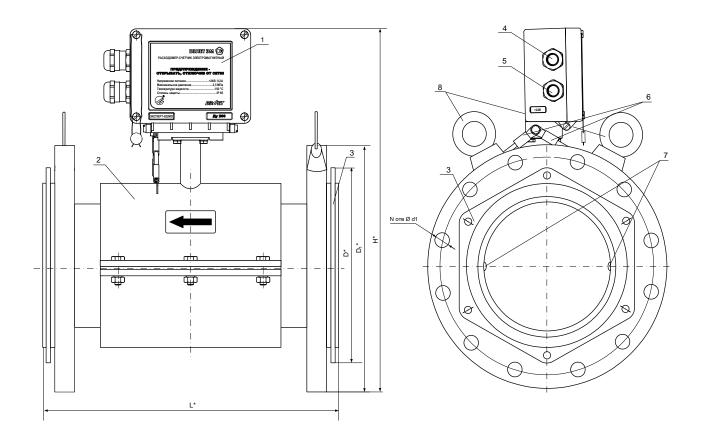

1 — блок измерения; 2 — первичный преобразователь расхода; 3 — защитные кольца; 4 — гермовод кабеля связи; 5 — гермовод кабеля питания; 6 — электрические проводники для соединения корпуса ЭМР с трубопроводом; 7 — дополнительный заземляющий элемент; 8 — электроды.

Рис.А.2. Вид расходомеров исполнений ЭКСПЕРТ-922МО, -921МИ, -922МА типоразмеров DN20...DN150.

Таблица А.2. Массогабаритные характеристики расходомеров исполнений ЭКСПЕРТ-922МО, -921МИ, -922МА типоразмеров DN20...DN150

				•	<u> </u>	•		
	d*, мм	D*, мм	D ₁ *, мм	L*,			N.4	
DN, мм				с защитными кольцами	без защитных колец, футеровка полиуретаном	Н*, мм	N	Масса, не более, кг
20	19	50	105	158	150	236	4	3,8
25	24	57	115	158	150	241	4	4,0
32	29	65	135	202	194	257	4	5,8
40	39	75	145	202	194	265	4	7,0
50	48	87	160	203	195	279	4	8,9
65	61	109	180	220	212	299	8	11,4
80	74	120	195	230	222	316	8	14,1
100	90	149	230	251	243	343	8	20,0
150	139	202	300	324	316	408	8	36,4

* - справочный размер

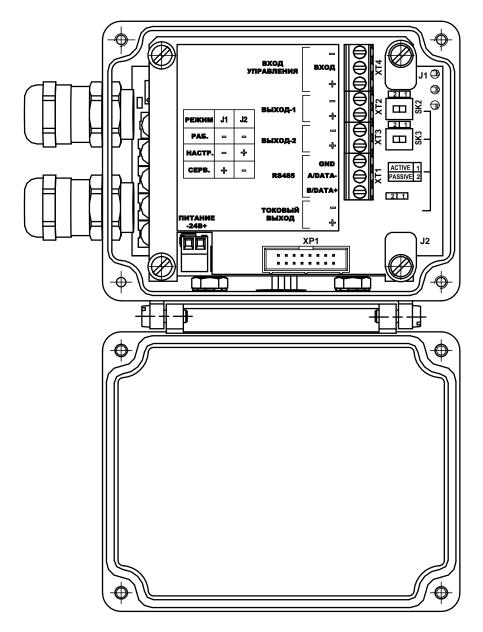
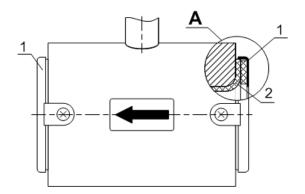

1 — блок измерения; 2 — первичный преобразователь расхода; 3 — защитные кольца; 4 — гермоввод кабеля связи; 5 — гермоввод кабеля питания; 6 — электрические проводники для соединения корпуса ЭМР с трубопроводом; 7 — электроды; 8 — рым-болт.

Рис.А.3. Вид расходомеров исполнений ЭКСПЕРТ-922МО, -921МИ,-922МА типоразмеров DN200, DN300.

Таблица А.3. Массогабаритные характеристики расходомеров исполнений ЭКСПЕРТ-922МО, -921МИ, -922МА типоразмеров DN200, DN300

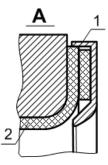
	d*, мм	D*, мм	D ₁ *, мм	L*, мм				
DN, MM				с защитными кольцами	без защитных колец, футеровка по- лиуретаном	Н*, мм	N	Масса, не более, кг
200	194	258	358	362	344	464	12	59,0
300	295	362	485	514	496	581	16	120,4

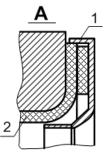


ПИТАНИЕ – разъем подключения кабеля питания =24В;

- J1 контактная пара разрешения модификации сервисных параметров;
- J2 контактная пара разрешения модификации калибровочных параметров;
- SK2 переключатель установки режима работы оконечного каскада универсального выхода №1;
- SK3 переключатель установки режима работы оконечного каскада универсального выхода №2;
- XT1 контактная колодка интерфейса RS-485;
- XT2 контактная колодка универсального выхода №1;
- XT3 контактная колодка универсального выхода №2;
- XT4 контактная колодка входа управления.

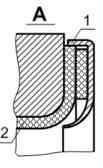
Рис.А.4. Вид модуля коммутации блока измерения расходомера.





2

ППР с защитными кольцами


а) общепромышленное исполнение

б) технологическое исполнение

в) отбойное исполнение

г) воротниковое исполнение

д) усиленное исполнение

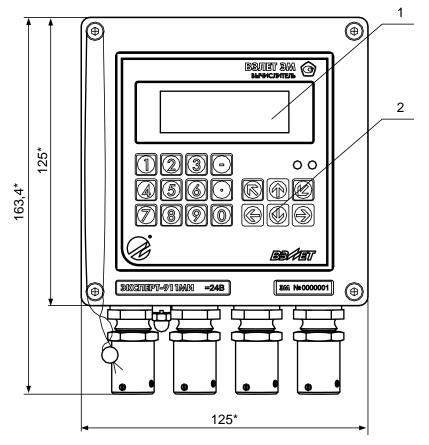
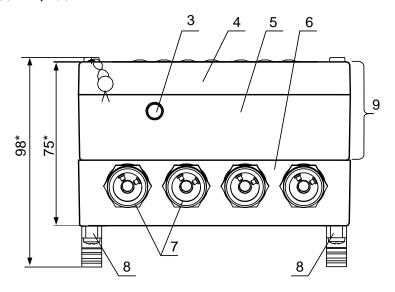
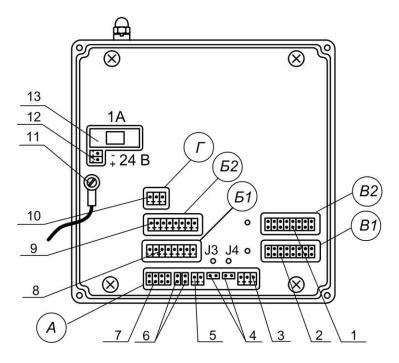

- 1 защитное кольцо;
- 2 футеровка.

Рис.А.5. Вид ППР с защитными кольцами разных исполнений.


Защитные кольца отбойного исполнения (рис.А.5в) могут устанавливаться в ЭМР, используемых для измерения расхода сильно абразивных жидкостей, усиленного исполнения (рис.А.5д) – в ЭМР для измерения расхода сильно агрессивных жидкостей.

Защитные кольца разных исполнений могут также снабжаться дополнительным заземляющим элементом (рис.А.2) для обеспечения электрического контакта в расходомерах, монтируемых в пластиковые (металлопластиковые) трубопроводы.

а) вид спереди


б) вид снизу

* - справочный размер

1 — индикатор; 2 — клавиатура; 3 — клемма заземления; 4 — модуль вычислителя; 5 — модуль ВИП; 6 — монтажный модуль; 7 — металлические гермовводы под присоединение металлорукавов кабелей питания и связи; 8 — кронштейн для установки на DIN-рейку; 9 — субблок вычислителя.

Рис.А.6. Вид вычислителя расходомера.

- A окно для размещения коммутационных элементов комбинированного модуля «RS-232 / RS-485 / универсальный выход 0»;
- Б1, В1 окна для размещения коммутационных элементов сервисного модуля, установленного в слот 1;
- 52, B2 окна для размещения коммутационных элементов сервисного модуля, установленного в слот 2;
- Г окно для размещения коммутационных элементов модуля внутреннего интерфейса RS-485 для связи с расходомером;
- 1 контактные пары для установки режима работы универсальных выходов 5-8:
- 2 контактные пары для установки режима работы универсальных выходов 1-4;
- 3 разъем выходного интерфейса RS-485;
- 4 контактные пары Ј3, Ј4 для установки режимов вычислителя;
- 5 разъем универсального выхода 0;
- 6 контактные пары J2, J1 для установки режима работы универсального выхода 0:
- 7 разъем выходного интерфейса RS-232;
- 8 разъем универсальных выходов 1-4;
- 9 разъем универсальных выходов 5-8;
- 10 разъем внутреннего интерфейса RS-485 для связи с расходомером;
- 11— клемма подключения проводника, соединяющего корпуса модуля ВИП и монтажного модуля;
- 12 разъем для подключения кабеля питания =24 В;
- 13 колодка предохранителя 1 А в цепи =24 В.

Рис.А.7. Вид сзади субблока вычислителя с двумя сервисными модулями (универсальных выходов 1-4 и 5-8)

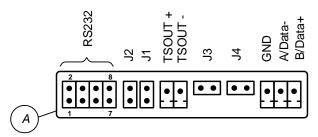
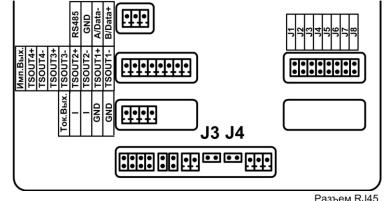


Рис.А.8. Коммутационные элементы комбинированного модуля.

Таблица А.3. Обозначение контактных элементов и сигналов комбинированного модуля.

Наименование выхода	Обозначение контактного элемента	Обозначение сигнала, назначение контактного элемента			
	1	RXD			
	2	RTS			
RS-232	3	TXD			
	4	CTS			
	7	GND			
	-	TSOUT+			
Универсальный	-	TSOUT-			
выход 0	J1	Контактные пары установки режима работь			
	J2	универсального выхода 0			
	J3	Voltortill in Bon I vetolingira povrana Brufono			
-	J4	Контактные пары установки режима прибора			
	-	GND			
RS-485	-	A / Data-			
	-	B / Data+			


Таблица А.2. Обозначения коммутационных элементов модулей внешних связей при маркировке на корпусе субблока

		Выходны	е сигналы	Контактные пары		
Номер выхода	Номер слота, куда установ- лен модуль	обозначение окна на рис.А.7	обозначение сигналов	обозначение окна на рис.А.7	обозначе- ние кон- тактных пар	
Универсальный 0	-	А	TSOUT +/-	Α	J1, J2	
(комб. модуль)					·	
Универсальный 1			TSOUT1 +/-		J1, J2	
Универсальный 2	1	Б1	TSOUT2 +/-	- B1	J3, J4	
Универсальный 3			TSOUT3 +/-		J5, J6	
Универсальный 4			TSOUT4 +/-		J7, J8	
Универсальный 5			TSOUT5 +/-		J9, J10	
Универсальный 6	2	Б2	TSOUT6 +/-	B2	J11, J12	
Универсальный 7	2		TSOUT7 +/-	DZ	J13, J14	
Универсальный 8			TSOUT8 +/-		J15, J16	
Токовый 1	1	Б1	I / GND	B1	-	
Токовый 2	2	Б2	I / GND	B2	-	

Пример маркировки коммутационных элементов модулей на корпусе субблока:

- комбинированного;
- универсальных выходов;
- токового;
- внутреннего RS-485 (связи с расходомером).

Подключение к сети Ethernet при установленном разъеме в окно Б1.

	Распайка р	Разъем RJ45				
	-аспаика р	азьема г	1040	Разъем на	4 0	
Llogu	№ контакта на субблоке	№ контак	та на RJ45	субблоке	1 8	
Цепь		для подклю- чения к сети	для подклю - чения к ПК	1 4 🖼 🗔		
TX+	1	1	3	TA TA RA REPORTED TO THE PROPERTY OF THE PROPE		1 8
TX-	2	2	6			вид сбоку
RX+	3	3	1	(<i>51</i>)		
RX-	4	6	2			
					вид сверху	_

Рис.А.9. Обозначения коммутационных элементов на субблоке вычислителя.

ПРИЛОЖЕНИЕ Б. Схемы входа и выходов

Б.1. Универсальные выходы блока измерения расходомера

Для обеспечения сопряжения с различными типами приемников оконечные каскады выходов БИ (рис.Б.1) могут работать как при питании от внутреннего развязанного источника питания (активный режим), так и от внешнего источника питания (пассивный режим). Типовая поставка — пассивный режим работы оконечных каскадов.

В скобках на схеме указаны обозначения для универсального выхода №2.

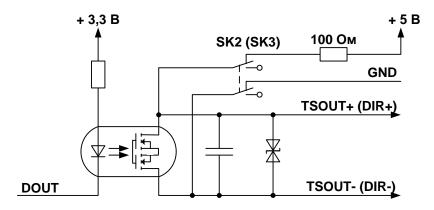


Рис.Б.1. Схема оконечного каскада универсальных выходов блока измерения.

Подключение оконечного каскада к внутреннему источнику питания + 5 В осуществляется с помощью переключателей SK2 и SK3 на плате коммутации БИ.

В активном режиме напряжение на выходе при отсутствии импульса, а также соответствующее уровню **Высокий** в логическом режиме может быть от 2,4 до 5,0 В. При наличии импульса и при уровне **Низкий** в логическом режиме — напряжение на выходе не более 0,4 В. Работа выхода в активном режиме допускается на нагрузку с сопротивлением не менее 1 кОм.

В пассивном режиме допускается питание от внешнего источника напряжением постоянного тока от 3 до 30 В. Допустимое значение коммутируемого тока нагрузки не более 150 мА.

Длина линии связи для универсальных выходов – до 300 м.

Б.2. Вход управления блока измерения

Схема входа управления БИ расходомера приведена на рис.Б.2. С помощью входа управления (внешняя кнопка) может осуществляться управление процессом дозирования в стартстопном режиме.

В качестве управляющего сигнала на вход в цепь XT4/2-XT4/3 должны подаваться импульсы тока (0,5-20) мА.

В отсутствии управляющего сигнала ток в цепи должен быть не более 0,2 мА.

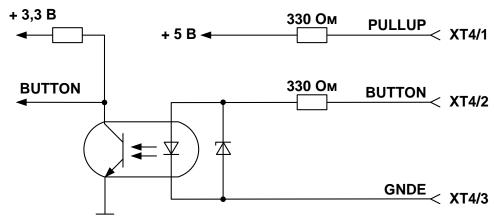


Рис.Б.2. Схема входного каскада блока измерения

Управляющий сигнал может также формироваться замыканием контактов XT4/1 и XT4/2 (например, с помощью кнопки) при сопротивлении внешней цепи не более 100 Ом.

В обоих случаях обеспечивается гальваническая развязка входной цепи.

Б.3. Универсальные выходы вычислителя

Оконечные каскады универсальных выходов вычислителя (рис. Б.3) могут работать как при питании от внутреннего развязанного источника питания (активный режим), так и от внешнего источника питания (пассивный режим). Типовая поставка – пассивный режим работы оконечного каскада.

В скобках на схеме указаны обозначения для универсальных выходов №№2...8.

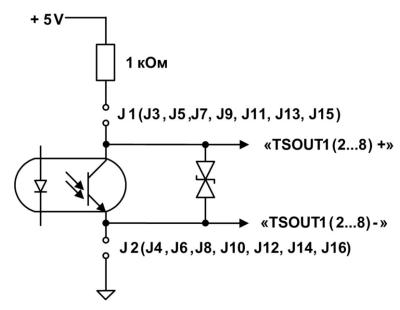
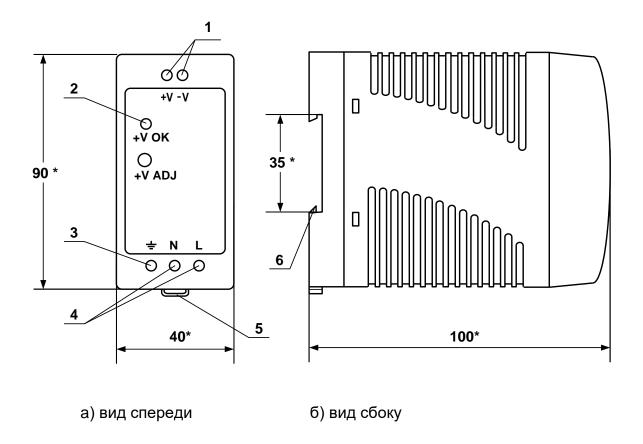


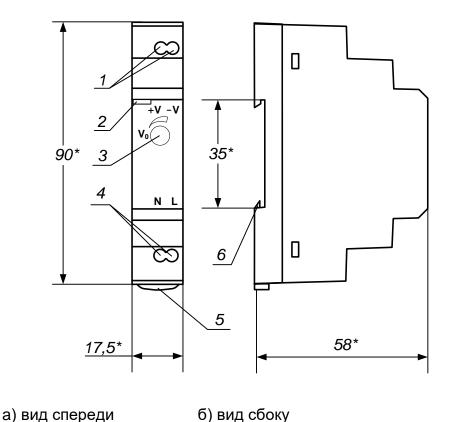
Рис.Б.3. Схема оконечного каскада универсальных выходов вычислителя

В активном режиме и заданном значении параметра **Актив. ур**. **Высокий** напряжение на выходе в логическом режиме и амплитуда импульса в импульсном режиме может быть от 2,4 до 5,0 В. При отсутствии импульса и при уровне **Низкий** в логическом режиме — напряжение на выходе не более 0,4 В. Работа выхода в активном режиме допускается на нагрузку с сопротивлением не менее 1 кОм.


В пассивном режиме допускается питание от внешнего источника напряжением постоянного тока от 5 до 10 В, допустимое значение коммутируемого тока нагрузки не более 10 мА. Допускается питание выходного каскада от внешнего источника напряжением до 24 В постоянного тока, при этом амплитуда выходных импульсов будет ограничена напряжением срабатывания супрессора на уровне 15 В.

Подключение оконечного каскада к внутреннему источнику питания + 5 В осуществляется с помощью перемычек, замыкающих контактные пары J1-J8 на соответствующем дополнительном модуле универсальных выходов.

Длина линии связи до 300 м.


ПРИЛОЖЕНИЕ В. Источник вторичного питания

- * справочный размер
 - 1 винты контактной колодки выходного напряжения =24 В;
 - 2 светодиодный индикатор включения источника вторичного питания;
 - 3 винт заземления:
 - 4 винты контактной колодки подключения напряжения питания ~220 В 50 Гц (L линия, N нейтраль);
 - 5 серьга для освобождения защелки;
 - 6 защелка для крепления на DIN-рейке.

Рис.В.1. Источники вторичного питания серии ADN-1524 (=24 В 15 Вт).

- * справочный размер
 - 1 винты контактной колодки выходного напряжения =24 В;
 - 2 светодиодный индикатор включения источника вторичного питания:
 - 3 винт подстройки выходного напряжения;
 - 4 винты контактной колодки подключения напряжения питания ~220 В 50 Гц (L линия, N нейтраль);
 - 5 серьга для освобождения защелки;
 - 6 защелка для крепления на DIN-рейке.

Рис.В.2. Источник вторичного питания серии HDR-15-24 (=24 В 15 Вт).

ШКСД.407212.010

